江苏省无锡市育才中学2026届高二上数学期末联考试题含解析_第1页
江苏省无锡市育才中学2026届高二上数学期末联考试题含解析_第2页
江苏省无锡市育才中学2026届高二上数学期末联考试题含解析_第3页
江苏省无锡市育才中学2026届高二上数学期末联考试题含解析_第4页
江苏省无锡市育才中学2026届高二上数学期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市育才中学2026届高二上数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合或,,则()A. B.C. D.2.已知椭圆C:的两个焦点分别为,,椭圆C上有一点P,则的周长为()A.8 B.10C. D.123.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.04.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.5.设数列、都是等差数列,若,则等于()A. B.C. D.6.在平面直角坐标系中,已知的顶点,,其内切圆圆心在直线上,则顶点C的轨迹方程为()A. B.C. D.7.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)8.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.9.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.10.加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆的蒙日圆的半径为()A.3 B.4C.5 D.611.设,,,…,,,则()A. B.C. D.12.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,、分别是的两个焦点,过的直线交于、两点,若的周长为,则的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线C:的焦点为,点为上一点,,则为_____.14.将某校全体高一年级学生期末数学成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图,现需要随机抽取60名学生进行问卷调查,采用按成绩分层随机抽样,则应抽取成绩不少于60分的学生人数为_______________.15.已知向量,,若与垂直,则___________.16.一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积18.(12分)设分别为椭圆的左右焦点,过的直线l与椭圆C相交于A,B两点,直线的倾斜角为60度,到直线l的距离为(1)求椭圆C的焦距;(2)如果,求椭圆C的方程19.(12分)命题存在,使得;命题对任意的,都有(1)若命题p为真时,求实数a的取值范围;若命题q为假时,求实数a的取值范围;(2)如果命题为真命题,命题为假命题,求实数a的取值范围20.(12分)已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.21.(12分)设椭圆:的左顶点为,右顶点为.已知椭圆的离心率为,且以线段为直径的圆被直线所截得的弦长为.(1)求椭圆的标准方程;(2)设过点的直线与椭圆交于点,且点在第一象限,点关于轴对称点为点,直线与直线交于点,若直线斜率大于,求直线的斜率的取值范围.22.(10分)圆与轴的交点分别为,且与直线,都相切(1)求圆的方程;(2)圆上是否存在点满足?若存在,求出满足条件的所有点的坐标;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据交集的概念和运算直接得出结果.【详解】由题意知,.故选:B.2、B【解析】根据椭圆的定义可得:,所以的周长等于【详解】因为,,所以,故的周长为故选:B3、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B4、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D5、A【解析】设等差数列的公差为,根据数列是等差数列可求得,由此可得出,进而可求得所求代数式的值.【详解】设等差数列的公差为,即,由于数列也为等差数列,则,可得,即,可得,即,解得,所以,数列为常数列,对任意的,,因此,.故选:A.【点睛】关键点点睛:本题考查等差数列基本量的求解,通过等差数列定义列等式求解公差是解题的关键,另外,在求解有关等差数列基本问题时,可充分利用等差数列的定义以及等差中项法来求解.6、A【解析】根据图可得:为定值,利用根据双曲线定义,所求轨迹是以、为焦点,实轴长为6的双曲线的右支,从而写出其方程即得【详解】解:如图设与圆切点分别为、、,则有,,,所以根据双曲线定义,所求轨迹是以、为焦点,实轴长为4的双曲线的右支(右顶点除外),即、,又,所以,所以方程为故选:A7、D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D8、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.9、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A10、A【解析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】由蒙日圆的定义,可知椭圆的两条切线的交点在圆上,所以,故选:A11、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B12、A【解析】本题首先可根据题意得出,然后根据的周长为得出,最后根据求出的值,即可求出的离心率.【详解】因为椭圆的面积为,所以长半轴长与短半轴长的乘积,因为的周长为,所以根据椭圆的定义易知,,,,则的离心率,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:1414、48【解析】根据频率分布直方图,求出成绩不少于分的频率,然后根据频数频率总数,即可求出结果【详解】根据频率分布直方图,成绩不低于(分)的频率为,由于需要随机抽取名学生进行问卷调查,利用样本估计总体的思想,则应抽取成绩不少于60分的学生人数为人故答案为:15、【解析】根据与垂直,可知,根据空间向量的数量积运算可求出的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解:与垂直,,则,解得:,,则,.故答案为:.16、或【解析】点关于轴的对称点为,即反射光线过点,分别讨论反射光线的斜率存在与不存在的情况,进而求解即可【详解】点关于轴的对称点为,(1)设反射光线的斜率为,则反射光线的方程为,即,因为反射光线与圆相切,所以圆心到反射光线的距离,即,解得,所以反射光线方程为:;(2)当不存在时,反射光线,此时,也与圆相切,故答案为:或【点睛】本题考查直线在光学中的应用,考查圆的切线方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用正弦定理化边为角可得,化简可得,结合,即得解;(2)在中,由余弦定理得,可得,利用面积公式即得解【详解】(1)中由正弦定理及条件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)为边的中点,,,得,中,由余弦定理得,∴,∴,∵,∴,18、(1)(2)【解析】(1)求得直线的方程,利用点到直线的距离列方程,由此求得,进而求得焦距.(2)联立直线的方程和椭圆方程,化简写出根与系数关系,结合来求得,从而求得椭圆的方程.【小问1详解】依题意,直线的方程为,到的距离为,所以焦距.【小问2详解】由,消去并化简得,设,则,,,,,所以,,,,,,,,,所以,所以椭圆的方程为.19、(1)p为真时或,q为假时;(2){或}.【解析】(1)p为真应用判别式求参数范围;q为真,根据恒成立求参数范围,再判断q为假对应的参数范围.(2)由题设易得p、q一真一假,讨论p、q的真假,结合(1)的结果求a的取值范围【小问1详解】若p真,则有实数根,∴,解得或若q为真,则,即故q为假时,实数a的取值范围为【小问2详解】∵命题真命题,命题为假命题,∴p,q一真一假,当p真q假时,,可得当p假q真时,,可得综上,实数a取值范围为或.20、(1);(2)存在,.【解析】(1)由题设可知求出,再结合,从而可求出椭圆的方程,(2)①若直线与轴垂直,由对称性可知,代入椭圆方程可求得结果,②若直线不与轴垂直,设直线的方程为,将直线方程与椭圆方程联立方程组,消去,然后利用根与系数的关系,设,,再由条件,得,从而得,再利用点到直线的距离公式可求得结果【详解】(1)由题设可知解得,,,所以椭圆的方程为:;(2)设,,①若直线与轴垂直,由对称性可知,将点代入椭圆方程,解得,原点到该直线的距离;②若直线不与轴垂直,设直线的方程为,由消去得,则由条件,即,由韦达定理得,整理得,则原点到该直线的距离;故存在定点,使得到直线的距离为定值.21、(1);(2).【解析】(1)根据直线被圆截得的弦长为,由解得,再由离心率结合求解。(2)设,则,得到直线:;直线:,联立求得,再根据线斜率大于,求得,然后由求解.【详解】(1)以线段为直径的圆的圆心为:,半径,圆心到直线的距离,直线被圆截得的弦长为,解得:,又椭圆离心率,∴,,椭圆的标准方程为:.(2)设,其中,,则,∴,,则直线为:;直线为:,由得:,∴,∴,∴,令,,则,∴,∵∴,∴,即.【点睛】本题主要考查椭圆方程和几何性质以及直线与圆,椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论