2026届河北省张家口市高二数学第一学期期末经典试题含解析_第1页
2026届河北省张家口市高二数学第一学期期末经典试题含解析_第2页
2026届河北省张家口市高二数学第一学期期末经典试题含解析_第3页
2026届河北省张家口市高二数学第一学期期末经典试题含解析_第4页
2026届河北省张家口市高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河北省张家口市高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数极小值为()A. B.C. D.2.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.3.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.8204.已知为圆:上任意一点,则的最小值为()A. B.C. D.5.抛物线的焦点是A. B.C. D.6.若命题p为真命题,命题q为假命题,则下列命题为真命题的是()A. B.C. D.7.在等差数列中,若,则的值为()A. B.C. D.8.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.9.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.10.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题11.圆的圆心到直线的距离为2,则()A. B.C. D.212.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.14.设函数的导数为,且,则___________15.莱昂哈德·欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线.后来人们称这条直线为该三角形的欧拉线.已知的三个顶点坐标分别是,,,则的垂心坐标为______,的欧拉线方程为______16.设,满足约束条件,则的最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知P,Q的坐标分别为,,直线PM,QM相交于点M,且它们的斜率之积是.设点M的轨迹为曲线C.(1)求曲线的方程;(2)设为坐标原点,圆的半径为1,直线:与圆相切,且与曲线交于不同的两点A,B.当,且满足时,求面积的取值范围.18.(12分)已知直线,,分别求实数的值,使得:(1);(2);(3)与相交.19.(12分)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.20.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.21.(12分)已知椭圆:的离心率为,,分别为椭圆的左,右焦点,为椭圆上一点,的周长为.(1)求椭圆的方程;(2)为圆上任意一点,过作椭圆的两条切线,切点分别为A,B,判断是否为定值?若是,求出定值:若不是,说明理由,22.(10分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.2、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来3、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.4、C【解析】设,则的几何意义为圆上的点和定点连线的斜率,利用直线和圆相切,即可求出的最小值;【详解】圆,它圆心是,半径为1,设,则,即,当直线和圆相切时,有,可得,,的最小值为:,故选:5、D【解析】先判断焦点的位置,再从标准型中找出即得焦点坐标.【详解】焦点在轴上,又,故焦点坐标为,故选D.【点睛】求圆锥曲线的焦点坐标,首先要把圆锥曲线的方程整理为标准方程,从而得到焦点的位置和焦点的坐标.6、B【解析】根据逻辑联结词“且”,一假则假,对四个选项一一判断直接即可判断.【详解】逻辑联结词“且”,一假则假.因为命题p为真命题,命题q为假命题,所以为假命题,为真命题.所以,为假,故A错误;为真,故B正确;为假,故C错误;为假,故D错误.故选:B7、C【解析】利用等差数列性质可求得,由可求得结果.【详解】由等差数列性质知:,,解得:;又,.故选:C.8、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.9、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.10、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.11、B【解析】配方求出圆心坐标,再由点到直线距离公式计算【详解】圆的标准方程是,圆心为,∴,解得故选:B.【点睛】本题考查圆的标准方程,考查点到直线距离公式,属于基础题12、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①.##②.【解析】利用递推关系式,结合等差数列通项公式可求得公差,进而得到;利用递推关系式可知数列的奇数项和偶数项分别成等差数列,采用裂项相消的方法可求得前项和.【详解】由得:,解得:;为等差数列,设其公差为,则,解得:,;由知:数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列;,又,,数列的前项和,.故答案为:;.【点睛】关键点点睛:本题考查根据数列递推关系求解数列中的项、裂项相消法求和的问题;解题关键是能够根据递推关系式得到数列的奇数项和偶数项分别成等差数列,由此可通过裂项相消的方法求得所求数列的和.14、【解析】,而,所以,,故填:.考点:导数15、①.##(0,1.5)②.【解析】由高线联立可得垂心,由垂心与重心可得欧拉线方程.【详解】由,可知边上的高所在的直线为,又,因此边上的高所在的直线的斜率为,所以边上的高所在的直线为:,即,所以,所以的垂心坐标为,由重心坐标公式可得的重心坐标为,所以的欧拉线方程为:,化简得.故答案为:;16、5【解析】由题可知表示点与点连线的斜率,再画出可行域结合图像知知.【详解】x,y满足约束条件,满足的可行域如图:则的几何意义是可行域内的点与(﹣3,﹣2)连线的斜率,通过分析图像得到当经过A时,目标函数取得最大值由可得A(﹣2,3),则的最大值是:故答案为5【点睛】(1)在平面直角坐标系内作出可行域(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型)(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解(4)求最值:将最优解代入目标函数即可求出最大值或最小值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】【小问1详解】设点,则,整理得曲线的方程:【小问2详解】因为圆的半径为1,直线:与圆相切,则,,设,将代入得,,,,,所以,,因为,令,在上单调减,,所以18、(1)或(2)或(3)且【解析】(1)根据直线一般式平行的条件列式计算;(2)根据直线一般式垂直的条件列式计算;(3)根据相交和平行的关系可得答案.【小问1详解】,,解得或又时,直线,,两直线不重合;时,直线,,两直线不重合;故或;【小问2详解】,,解得或;【小问3详解】与相交故由(1)得且.19、(1);(2)直线恒过定点.【解析】(1)根据椭圆的焦距可求出,由椭圆的面积等于得,求出,即可求出椭圆的标准方程;(2)设直线,,进而写出为,两点坐标,将直线与椭圆的方程联立,根据韦达定理求,,由三点共线可知,将,代入并化简,得到的关系式,分析可知经过的定点坐标.【详解】(1)椭圆的面积等于,,,椭圆的焦距为,,,椭圆方程为(2)设直线,,则,,三点共线,得,直线与椭圆交于两点,,,,由,得,,,代入中,,,当,直线方程为,则重合,不符合题意;当时,直线,所以直线恒过定点.20、(1)(2)【解析】(1)设是公差为d的等差数列,是公比为q的等比数列,运用通项公式可得,,进而得到所求通项公式;(2)求得,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【小问1详解】解:(1)设是公差为d的等差数列,是公比为q的等比数列,由,,可得,;即有,,则,则;【小问2详解】解:,则数列的前n项和为.21、(1)(2)是;【解析】(1)由离心率和焦点三角形周长可求出,结合关系式得出,即可得出椭圆的方程;(2)由平行于轴特殊情况求出,即;当平行于轴时,设过的直线为,联立椭圆方程,令化简得关于的二次方程,由韦达定理即可求解.【小问1详解】由题可知,,解得,又,解得,故椭圆的标准方程为:;【小问2详解】如图所示,当平行于轴时,恰好平行于轴,,,;当不平行于轴时,设,设过点的直线为,联立得,令得,化简得,设,则,又,故,即.综上所述,.22、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论