版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆兵团八师一四三团一中2026届高二数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A. B.C. D.2.已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是()A B.C. D.3.已知函数在上单调递减,则实数的取值范围是()A. B.C. D.4.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.75.设函数在R上可导,则()A. B.C. D.以上都不对6.从编号分别为,,,,的五个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为()A. B.C. D.7.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.8.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条 B.2条C.3条 D.4条9.若不等式组表示的区域为,不等式表示的区域为,向区域均匀随机撒颗芝麻,则落在区域中的芝麻数约为()A. B.C. D.10.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.11.函数的导数记为,则等于()A. B.C. D.12.已知中,内角所对的边分别,若,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.14.设双曲线(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,且原点到直线l的距离为c,求双曲线的离心率15.将连续的正整数填入n行n列的方阵中,使得每行、每列、每条对角线上的数之和相等,可得到n阶幻方.记n阶幻方每条对角线上的数之和为,如图:,那么的值为___________.16.圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.18.(12分)已知是抛物线的焦点,点在抛物线上,且.(1)求的方程;(2)过上一动点作的切线交轴于点.判断线段的中垂线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.19.(12分)已知函数,.(1)令,求函数的零点;(2)令,求函数的最小值.20.(12分)已知等比数列{an}中,a1=1,且2a2是a3和4a1的等差中项.数列{bn}满足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求数列{an}的通项公式;(2)求数列{an+bn}前n项和Tn.21.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)若圆C与直线交于A,B两点,______,求m的值从下列三个条件中任选一个补充在上面问题中并作答:条件①:;条件②:圆上一点P到直线的最大距离为;条件③:22.(10分)已知数列{an}的首项a1=1,且an+1=(n∈N*).(1)证明:数列是等比数列;(2)设bn=-,求数列{bn}的前n项和Sn.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.2、B【解析】根据导数的几何意义,求出切线方程,求出切线和横截距a和纵截距b,面积为【详解】由题意可得,所以,则所求切线方程为令,得;令,得故所求三角形的面积为故选:B3、A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.4、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C5、B【解析】根据极限的定义计算【详解】由题意故选:B6、C【解析】利用古典概型计算公式计算即可【详解】从编号分别为,,,,的五个大小完全相同的小球中,随机取出三个小球共有种不同的取法,恰好有两个小球编号相邻的有:,共有6种所以概率为故选:C7、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D8、B【解析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2)【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.9、A【解析】作出两平面区域,计算两区域的公共面积,利用几何概型得出芝麻落在区域Γ内的概率,进而可得答案.【详解】作出不等式组所表示的平面区域如下图中三角形ABC及其内部,不等式表示的区域如下图中的圆及其内部:由图可得,A点坐标为点坐标为坐标为点坐标为.区域即的面积为,区域的面积为圆的面积,即,其中区域和区域不相交的部分面积即空白面积,所以区域和区域相交的部分面积,所以落入区域的概率为.所以均匀随机撒颗芝麻,则落在区域中芝麻数约为.故选:A.10、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C11、D【解析】求导后代入即可.【详解】,.故选:D.12、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:14、e=2.【解析】先求出直线的方程,利用原点到直线的距离为,,求出的值,进而根据求出离心率【详解】由l过两点(a,0),(0,b),得l的方程为bx+ay-ab=0.由原点到l的距离为c,得=c.将b=代入平方后整理,得162-16·+3=0.解关于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴应舍去e=.故所求离心率e=2.【点睛】本题考查双曲线性质,考查求双曲线的离心率常用的方法即构造出关于的等式,属于中档题15、34【解析】根据每行数字之和相等,四行数字之和刚好等于1到16之和可得.【详解】4阶幻方中,4行数字之和,得.故答案为:3416、【解析】由题设知:圆锥的轴截面为等边三角形,进而求圆锥的底面周长,由扇形面积公式求圆锥的侧面积大小.【详解】由题设,圆锥的轴截面为等边三角形,又圆锥的母线长为2,∴底面半径为1,则底面周长为,∴圆锥的侧面积大小为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.18、(1)(2)过定点,定点为【解析】(1)利用抛物线的定义求解;(2)设直线的方程为,,与抛物线方程联立,根据直线与抛物线C相切,由求得,再得到,写出线段的中垂线方程求解.【小问1详解】解:由题意得,,解得=2p,因为点M(,4)在抛物线C上,所以42=2p=4p2,解得p=2,所以抛物线C的标准方程为.【小问2详解】由已知得,直线的斜率存在且不为0,所以设直线的方程为,与抛物线方程联立并消去得:,因为直线与抛物线C相切,所以,得,,所以,得,在中,令得,所以,所以线段中点为,线段的中垂线方程为,所以线段的中垂线过定点.19、(1)答案见解析(2)答案见解析【解析】(1)函数零点的个数,就是方程的解的个数,显然是方程的一个解,再对a分类讨论,即得函数的零点;(2)令,可得,得,再对二次函数的对称轴分三种情况讨论得解.【详解】(1)由,可知函数零点的个数,就是方程的解的个数,显然是方程的一个解;当时,方程可化为,得,由函数单调递增,且值域为,有下列几种情况如下:①当时,方程没有根,可得函数只有一个零点;②当时,方程的根为,可得函数只有一个零点;③当且时,方程的根为,由,可得函数有两个零点和;由上知,当或时,函数的零点为;当且时,数的零点为和.(2)令,可得,由,,可得,二次函数的对称轴为,①当时,即,此时函数的最小值为;②当时,即,此时函数的最小值为;③当,即,此时函数最小值为.【点睛】本题主要考查函数的零点问题,考查指数对数函数的图象,考查函数的最值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1);(2).【解析】(1)根据已知条件求出等比数列的公比,然后利用等比数列通项公式求解即可;(2)根据已知求出数列的通项公式,再结合(1)中结论并利用分组求和法求解即可.【详解】(1)设等比数列公比为q,因为,所以,因为是和的等差中项,所以,即,解得,所以.故答案为:.(2)因为,所以为等差数列,因为,,所以公差,故.所以.故答案为:.21、(1)(2)【解析】(1)根据圆心在过点,的线段的中垂线上,同时圆心圆心在直线上,可求出圆心的坐标,进而求得半径,最后求出其标准方程;(2)选①利用用垂径定理可求得答案,选②根据圆上一点P到直线的最大距离为可求得答案,选③先利用向量的数量积可求得,解法就和选①时相同.【小问1详解】由题意可知,圆心在点的中垂线上,该中垂线的方程为,于是,由,解得圆心,圆C的半径所以,圆C的方程为;【小问2详解】①,因为,,所以圆心C到直线l的距离,则,解得,②,圆上一点P到直线的最大距离为,可知圆心C到直线l的距离则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保证合同2026年债权转让
- 2026年保密协议合同样本
- 二手房转让合同协议2026规范
- 2026年网络安全服务保密合同
- 办公文具采购合同2026年具体规范
- 2024年大数据技术职业生涯规划书
- 执法培训课件
- 秋人教版八年级生物上册同步导学课件:5.2.3 社会行为
- 《大数据应用技术基础》课件3.1.2Hbase数据模型
- 2025-2031年中国六氟环氧丙烷行业市场发展规模及产业需求研判报告
- 矿石营销方案
- (正式版)DB32∕T 5156-2025 《零碳园区建设指南》
- 人教PEP版(2024)四年级上册英语-Unit 5 The weather and us 单元整体教学设计(共6课时)
- 广东省广州市2025年初中学业水平考试英语试题(含解析)
- 2025年人教版八年级英语上册各单元词汇知识点和语法讲解与练习(有答案详解)
- 道路标识牌监理实施细则
- 【《基于杜邦分析的比亚迪公司盈利能力分析》9400字(论文)】
- 培养方案修订情况汇报
- 监控综合维保方案(3篇)
- 犊牛兽医工作总结
- JJF(陕) 125-2025 医用移动式 C 形臂 X 射线辐射源校准规范
评论
0/150
提交评论