版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省邵武市第四中学2026届高一上数学期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的大小关系为()A B.C. D.2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.3.已知函数则函数的零点个数为.A. B.C. D.4.命题“且”是命题“”的()条件A.充要 B.充分不必要C.必要不充分 D.既不充分也不必要5.已知,,则()A. B.C.或 D.6.设,则()A.3 B.2C.1 D.-17.函数单调递增区间为A. B.C D.8.函数f(x)=若f(x)=2,则x的值是()A. B.±C.0或1 D.9.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.10.函数f(x)=x2-3x-4的零点是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数且的图象恒过定点__________.12.已知定义在上的函数,满足不等式,则的取值范围是______13.设则__________.14.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是____________.15.已知圆心为,且被直线截得的弦长为,则圆的方程为__________16.已知函数是幂函数,且在x∈(0,+∞)上递减,则实数m=________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的一段图象如下图所示.(1)求函数的解析式;(2)将函数的图象向右平移个单位,得到的图象.求直线与函数的图象在内所有交点的横坐标之和.18.已知函数.(1)若,求的解集;(2)若为锐角,且,求的值.19.已知集合,集合(1)当时,求;(2)当时,求m的取值范围20.计算:(1);(2)21.已知函数的图象如图(1)求函数的解析式;(2)将函数的图象向右平移个单位长度得到曲线,把上各点的横坐标保持不变,纵坐标变为原来的倍得到的图象,且关于的方程在上有解,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】观察题中,不妨先构造函数比较大小,再利用中间量“1”比较与大小即可得出答案.【详解】由题意得,,由函数在上是增函数可得,由对数性质可知,,所以,故选:B2、D【解析】根据三视图还原该几何体,然后可算出答案.【详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D3、B【解析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【点睛】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题4、A【解析】将化为,求出x、y值,根据充要条件的定义即可得出结果.【详解】由,可得,解得x=1且y=2,所以“x=1且y=2”是“”的充要条件.故选:A.5、A【解析】利用两边平方求出,再根据函数值的符号得到,由可求得结果.【详解】,,,,,,所以,,.故选:A..6、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B7、A【解析】,所以.故选A8、A【解析】根据函数值为2,分类讨论即可.【详解】若f(x)=2,①x≤-1时,x+2=2,解得x=0(不符合,舍去);②-1<x<2时,,解得x=(符合)或x=(不符,舍去);③x≥2时,2x=2,解得x=1(不符,舍去).综上,x=.故选:A.9、C【解析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C10、D【解析】直接利用函数零点定义,解即可.【详解】由,解得或,函数零点是.故选:.【点睛】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.12、【解析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题13、【解析】先求,再求的值.【详解】由分段函数可知,.故答案为:【点睛】本题考查分段函数求值,属于基础题型.14、##-0.4【解析】根据函数的周期性及可得的值,进而利用周期性即可求解的值.【详解】解:因为是定义在上且周期为2的函数,在区间上,所以,,又,即,解得,所以,故答案为:.15、【解析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=2516、2【解析】由幂函数的定义可得m2-m-1=1,得出m=2或m=-1,代入验证即可.【详解】是幂函数,根据幂函数的定义和性质,得m2-m-1=1解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2故答案为:2【点睛】本题考查了幂函数的定义,考查了理解辨析能力和计算能力,属于基础题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由图象可计算得;(2)由题意可求,进而可以求出在给定区间内与已知直线的交点的横坐标,问题得解.【小问1详解】由题图知,,于是,将的图象向左平移个单位长度,得的图象.于是所以,【小问2详解】由题意得故由,得因为,所以所以或或或,所以,在给定区间内,所有交点的横坐标之和为.18、(1)(2)【解析】(1)利用三角恒等变换,将函数转化为,由求解;(2)由得到,再由,利用二倍角公式求解.【小问1详解】解:,,,由,得,即,又,故的解集为.【小问2详解】由,得,因为为锐角,所以,则,故,,.19、(1);(2).【解析】(1)利用集合的交运算求即可.(2)根据已知,由集合的交集结果可得,即可求m的取值范围【小问1详解】由题设,,而,∴.【小问2详解】由,显然,∴,可得.20、(1);(2).【解析】(1)根据指数幂的运算法则,以及根式与指数幂的互化公式,直接计算,即可得出结果;(2)根据对数的运算法则,直接计算,即可得出结果.【详解】(1)原式=(2)原式==21、(1)(2)【解析】(1)由函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长教育方面的培训课件
- 2026年新能源电池技术研发合同协议
- 2026年投资理财咨询合同书格式大全
- 2026年陆运提单质押合同
- 2026年农资产品采购合同
- 2026年货物运输合同标准模板
- 2026年遗嘱见证合同协议
- 2026年虚拟主机SSL证书合同
- 2026年动漫制作合作合同
- 2026年长途大件货物运输合同
- DB61-T 1843-2024 酸枣种植技术规范
- 古建筑修缮加固施工方案
- DG-TJ08-19-2023园林绿化养护标准
- 上海市2024-2025学年高二上学期期末考试英语试题(含答案无听力原文及音频)
- 实验室评审不符合项原因及整改机制分析
- 农贸市场摊位布局措施
- 企业春季校园招聘会职等你来课件模板
- 【MOOC】线性代数-同济大学 中国大学慕课MOOC答案
- 冲压设备精度检测调整作业SOP指导书
- 乡村道路片石挡土墙施工合同
- 2022年内蒙古高等职业院校对口招收中等职业学校毕业生单独考试语文试卷答案
评论
0/150
提交评论