版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市师范大学附属中学2026届高一数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,,则()A. B.C. D.2.已知角的终边经过点,且,则的值为()A. B.C. D.3.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是A. B.C. D.4.关于函数有下述四个结论:①是偶函数;②在区间单调递减;③在有个零点;④的最大值为.其中所有正确结论的编号是()A.①②④ B.②④C.①④ D.①③5.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A. B.C. D.6.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.7.已知全集,集合,,那么阴影部分表示的集合为A. B.C. D.8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④9.下列函数中既是奇函数,又在区间上是增函数的是()A. B.C. D.10.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数为奇函数,则___________.12.命题“,”的否定是___________.13.若集合,则满足的集合的个数是___________.14.已知一组数据,,…,的平均数,方差,则另外一组数据,,…,的平均数为______,方差为______15.已知函数的图象恒过定点,若点也在函数的图象上,则_________16.函数在______单调递增(填写一个满足条件的区间)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①“xA是xB的充分不必要条件;②;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合,.(1)当a=2时,求;(2)若选,求实数a的取值范围.18.如图,已知在正四棱锥中,为侧棱的中点,连接相交于点(1)证明:;(2)证明:;(3)设,若质点从点沿平面与平面的表面运动到点的最短路径恰好经过点,求正四棱锥的体积19.某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;(ii)若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.20.已知函数.(1)当时,若方程式在上有解,求实数的取值范围;(2)若在上恒成立,求实数的值范围.21.已知圆的圆心在直线上,且经过圆与圆的交点.(1)求圆的方程;(2)求圆的圆心到公共弦所在直线的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】解一元二次不等式求出集合,解不等式求出集合,再进行交集运算即可求解.【详解】因为,,所以,故选:C.2、B【解析】根据点,先表示出该点和原点之间的距离,再根据三角函数的定义列出等式,解方程可得答案.【详解】因为角的终边经过点,则,因为,所以,且,解得,故选:B3、D【解析】化简函数,根据表示不超过的最大整数,可得结果.【详解】函数,当时,;当时,;当时,,函数的值域是,故选D.【点睛】本题考查指数的运算、函数的值域以及新定义问题,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.4、A【解析】利用偶函数的定义可判断出命题①的正误;去绝对值,利用余弦函数的单调性可判断出命题②的正误;求出函数在区间上的零点个数,并利用偶函数的性质可判断出命题③的正误;由取最大值知,然后去绝对值,即可判断出命题④的正误.【详解】对于命题①,函数的定义域为,且,则函数为偶函数,命题①为真命题;对于命题②,当时,,则,此时,函数在区间上单调递减,命题②正确;对于命题③,当时,,则,当时,,则,由偶函数的性质可知,当时,,则函数在上有无数个零点,命题③错误;对于命题④,若函数取最大值时,,则,,当时,函数取最大值,命题④正确.因此,正确的命题序号为①②④.故选A.【点睛】本题考查与余弦函数基本性质相关的命题真假的判断,解题时要结合自变量的取值范围去绝对值,结合余弦函数的基本性质进行判断,考查推理能力,属于中等题.5、B【解析】根据集合交集的定义可得所求结果【详解】∵,∴故选B【点睛】本题考查集合的交集运算,解题的关键是弄清两集合交集中元素的特征,进而得到所求集合,属于基础题6、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.7、D【解析】由韦恩图可知阴影部分表示的集合为,求出,计算得到答案【详解】阴影部分表示的集合为,故选【点睛】本题主要考查的是韦恩图表达集合的关系和运算,属于基础题8、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.9、B【解析】利用函数的定义域、奇偶性、单调性等性质分别对各选项逐一判断即可得解.【详解】对于A,函数图象总在x轴上方,不是奇函数,A不满足;对于B,函数在R上递增,且,该函数是奇函数,B满足;对于C,函数是偶函数,C不满足;对于D,函数定义域是非零实数集,而,D不满足.故选:B10、B【解析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:12、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”13、4【解析】求出集合,由即可求出集合的个数【详解】因为集合,,因为,故有元素0,3,且可能有元素1或2,所以或或或故满足的集合的个数为,故答案为:14、①.11②.54【解析】由平均数与方差的性质即可求解.【详解】解:由题意,数据,,…,的平均数为,方差为故答案:11,54.15、【解析】根据对数过定点可求得,代入构造方程可求得结果.【详解】,,,解得:.故答案为:.16、(答案不唯一)【解析】先求出函数的定义域,再换元,然后利用复合函数单调性的求法求解详解】由,得,解得或,所以函数的定义域为,令,则,因为在上单调递减,在上单调递增,而在定义域内单调递增,所以在上单调递增,故答案为:(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)当时,求出集合再根据并集定义求;(2)选择有AB,列不等式求解即可;选择有同样列出不等式求解;选择因为,则或,求解即可【详解】(1)当时,集合,,所以;(2)选择因为“”是“”的充分不必要条件,所以AB,因为,所以又因为,所以等号不同时成立,解得,因此实数a的取值范围是.选择因为,所以.因为,所以.又因为,所以,解得,因此实数a的取值范围是.选择因为,而,且不为空集,,所以或,解得或,所以实数a取值范围是或18、(1)详见解析;(2)详见解析;(3).【解析】(1)由中位线定理可得线线平面,从而有线面平行;(2)正四棱锥中,底面是正方形,因此有,又PO是正四棱锥的高,从而有PO⊥AC,这样就有AC与平面PBD垂直,从而得面面垂直;(3)把与沿PD摊平,由A、M、C共线,因此新的平面图形是平行四边形,从而为菱形,M到底面ABCD的距离为原正四棱锥高PO的一半,计算可得体积试题解析:(1)证明:连接OM,∵O,M分别为BD,PD的中点,∴在△PBD中,OM//PB,又PB面ACM,OM面ACM,∴PB//面ACM(2)证明:连接PO.∵在正四棱锥中,PA=PC,O为AC的中点,∴PO⊥AC,BD⊥AC,又PO∩BD=O,AC⊥平面PBD,又AC平面ACM,∴平面ACM⊥平面PBD(3)如图,把△PAD与△PCD沿PD展开成平面四边形PADC1由题意可知A,M,C1三点共线,∵△PAD≌△PCD,M为PD的中点,∴AM=MC1,即M为AC1中点,∴平面四边形PADC1为平行四边形,又PA=PC,∴平面四边形PADC1为菱形,∴正四棱锥的侧棱长为2∵PO⊥AC,PO⊥BD,PO⊥面ABCD,∴PO为正四棱锥的高19、(1);(2)(i)111.95;(ii)0.75.【解析】(1)当时,;当时,,故;(2)(i)直接利用平均值公式求解即可;(ii)根据对立事件的概率公式可得当天的利润不少于元的概率为.试题解析:(1)当时,;当时,.故.(2)(i)这100天中,有5天的日利润为85元,10天的日利润为92元,10天的日利润为99元,5天的日利润为106元,10天的日利润为113元,60天的日利润为120元,故这100天的日利润的平均数为.(ii)当天的利润不少于100元当且仅当日需求量不少于28瓶.当天的利润不少于100元的概率为.【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及平均数公式、对立事件的概率,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.20、(1)(2)【解析】(1)将代入函数,根据函数单调性得到,计算函数值域得到答案.(2)根据函数定义域得到,考虑和两种情况,根据函数的单调性得到不等式,解不等式得到答案.【小问1详解】,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托钢材加工合同范本
- 建房协议合同三方合同
- 小规模易安装合同范本
- 工程围挡租赁合同范本
- 宠物与养老合作协议书
- 承包老年公寓合同范本
- 承包建材合作合同范本
- 广告音响租赁合同范本
- 托运车辆出售合同范本
- 工程车辆维修合同协议
- 2026年辽宁现代服务职业技术学院单招职业倾向性测试题库附答案
- 2026渤海银行招聘面试题及答案
- 2026年呼和浩特职业学院单招职业适应性测试模拟试题及答案解析
- 北师大博士笔试题目及答案
- 2025年1月浙江省普通高中学业水平考试思想政治试卷(含答案)
- 江苏省新高考基地学校2026届高三上学期第一次大联考政治试卷(含答案)
- 年轻干细胞与再生医学的未来研究方向-洞察及研究
- 行政总厨年终述职课件
- 邵阳市纪委监委所属事业单位公开选调(招聘)工作人员10人考试题库新版
- 自然资源执法考试试题及答案
- 中英文个人贷款借款合同模板
评论
0/150
提交评论