版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省腾冲一中高一上数学期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则=A. B.C. D.2.设平面向量,则A. B.C. D.3.若角满足,,则角所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限4.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-45.函数的图象如图所示,则函数的零点为()A. B.C. D.6.实数,,的大小关系正确的是()A. B.C. D.7.设,,,则()A. B.C. D.8.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数9.若函数在上是增函数,则实数k的取值范围是()A. B.C. D.10.已知函数的图象关于直线对称,则=A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若不等式的解集为,则不等式的解集为______.12.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.13.已知幂函数图像过点,则该幂函数的解析式是______________14.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______15.若,记,,,则P、Q、R的大小关系为______16.函数在上是x的减函数,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了在冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层、某栋房屋要建造能使用20年的隔热层,每厘米厚的隔热层的建造成本是6万元,该栋房屋每年的能源消耗费用C(万元)与隔热层厚度x(厘米)满足关系式:,若无隔热层,则每年能源消耗费用为5万元.设为隔热层建造费用与使用20年的能源消耗费用之和.(1)求和的表达式;(2)当隔热层修建多少厘米厚时,总费用最小,并求出最小值.18.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面由扇形挖去扇形后构成的已知米,米,线段、线段与弧、弧的长度之和为米,圆心角为弧度(1)求关于的函数解析式;(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值19.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求值20.如图,三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求与平面所成角的大小.21.已知函数,.(1)若函数的值域为R,求实数m的取值范围;(2)若函数是函数的反函数,当时,函数的最小值为,求实数m的值;(3)用表示m,n中的最大值,设函数,有2个零点,求实数m的范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化2、A【解析】∵∴故选A;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;3、C【解析】根据,,分别确定的范围,综合即得解.【详解】解:由知,是一、三象限角,由知,是三、四象限角或终边在y轴负半轴上,故是第三象限角故选:C4、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题5、B【解析】根据函数的图象和零点的定义,即可得出答案.【详解】解:根据函数的图象,可知与轴的交点为,所以函数的零点为2.故选:B.6、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7、A【解析】先计算得到,,再利用展开得到答案.详解】,,;,;故选:【点睛】本题考查了三角函数值的计算,变换是解题的关键.8、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.9、C【解析】根据二次函数的对称轴在区间的左边,即可得到答案;【详解】由题意得:,故选:C10、C【解析】因为函数的图象关于直线对称,所以,即,因此,选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.12、3【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.13、【解析】设出幂函数的函数表达,然后代点计算即可.【详解】设,因为,所以,所以函数的解析式是故答案为:.14、【解析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可15、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:16、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)隔热层修建4厘米厚时,总费用达到最小值,最小值为64万元【解析】(1)由已知,又不建隔热层,每年能源消耗费用为5万元.所以可得C(0)=5,由此可求,进而得到.由已知建造费用为6x,根据隔热层建造费用与20年的能源消耗费用之和为f(x),可得f(x)的表达式(2)由(1)中所求的f(x)的表达式,利用基本不等式求出总费用f(x)的最小值【小问1详解】因为,若无隔热层,则每年能源消耗费用为5万元,所以,故,因为为隔热层建造费用与使用20年的能源消耗费用之和,所以.【小问2详解】,当且仅当,即时,等号成立,即隔热层修建4厘米厚时,总费用达到最小值,最小值为64万元.18、(1).(2)当时,取最大值.【解析】(1)根据弧长公式和周长列方程得出关于的函数解析式;(2)根据扇形面积公式求出关于的函数,从而得出的最大值.【小问1详解】解:根据题意,可算得弧,弧,,;【小问2详解】解:依据题意,可知,当时,.答:当米时铭牌的面积最大,且最大面积为平方米19、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值【详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.20、(1)证明见解析(2)【解析】(1)连结与交于点,连结,由中位线定理可得,再根据线面平行的判定定理即可证明结果;(2)方法一:根据线面垂直的判定定理,可证明平面;取的中点,易证平面,所以即所求角,再根据直棱柱的有关性质求即可得到结果;方法二:根据线面垂直的判定定理,可证明平面;取的中点,易证平面;所以即与平面所成的角,再根据直棱柱的有关性质求即可得到结果.【小问1详解】证明:如图一,连结与交于点,连结.在中,、为中点,∴.又平面,平面,∴平面.图一【小问2详解】证明:(方法一)如图二,图二∵,为的中点,∴.又,,∴平面.取的中点,又为的中点,∴、、平行且相等,∴四边形是平行四边形,∴与平行且相等.又平面,∴平面,∴即所求角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设∴,,,.(方法二)如图三,图三∵,为的中点,∴.又,,∴平面.取的中点,则,∴平面.∴即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年演出经纪人之演出市场政策与法律法规考试题库200道及答案【名师系列】
- 2026年土地登记代理人之土地登记相关法律知识考试题库500道附参考答案(满分必刷)
- 2026年一级造价师之建设工程造价管理考试题库500道及答案(各地真题)
- 2026年中级经济师之中级工商管理考试题库500道附完整答案(网校专用)
- 2026年中国历史文化知识竞赛考试题库含答案【培优】
- 2026年监理工程师之交通工程目标控制考试题库300道附答案【培优b卷】
- 2026年教师招聘之中学教师招聘考试题库带答案(培优a卷)
- 2026年无锡职业技术学院单招职业技能考试参考题库附答案详解
- 2026年浙江舟山群岛新区旅游与健康职业学院单招综合素质笔试模拟试题附答案详解
- 2026年郑州信息科技职业学院单招综合素质考试模拟试题附答案详解
- 2024-2025学年重庆市南开中学七年级(上)期末道德与法治试卷(含答案)
- 2025长影集团有限责任公司招聘3人笔试模拟试题及答案解析
- 浙江省中医医疗技术感染预防与控制标准操作规程(试行)
- 腾讯新员工入职培训
- 语文试卷【黑吉辽蒙卷】高一辽宁省部分学校金太阳2025-2026学年高一上学期11月联考(26-108A)(11.24-11.25)
- 2025年政治会考重庆试卷及答案
- 垃圾分类工作面试技巧与问题
- 全科接诊流程训练
- 2026年新《煤矿安全规程》培训考试题库(附答案)
- 鱼塘测量施工方案
- 幼儿园手指律动培训大纲
评论
0/150
提交评论