2026届甘肃省天水市秦州区天水一中数学高一上期末学业质量监测模拟试题含解析_第1页
2026届甘肃省天水市秦州区天水一中数学高一上期末学业质量监测模拟试题含解析_第2页
2026届甘肃省天水市秦州区天水一中数学高一上期末学业质量监测模拟试题含解析_第3页
2026届甘肃省天水市秦州区天水一中数学高一上期末学业质量监测模拟试题含解析_第4页
2026届甘肃省天水市秦州区天水一中数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届甘肃省天水市秦州区天水一中数学高一上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆关于直线对称的圆的方程为A. B.C. D.2.已知,则三者的大小关系是A. B.C. D.3.已知命题“存在,使得等式成立”是假命题,则实数的取值范围是()A. B.C. D.4.已知点M在曲线上,点N在曲线:上,则|MN|的最小值为()A.1 B.2C.3 D.45.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A.{−2,3} B.{−2,2,3}C.{−2,−1,0,3} D.{−2,−1,0,2,3}6.函数的最小值为()A.1 B.C. D.7.一钟表的秒针长,经过,秒针的端点所走的路线长为()A. B.C. D.8.已知全集U=R,集合,,则集合()A. B.C. D.9.要得到函数的图象,只需的图象A.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的倍(横坐标不变)C.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)10.已知集合,则(

)A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知sinα+cosα=,α∈(-π,0),则tanα=________.12.如图,在棱长均相等的正四棱锥最终,为底面正方形的重心,分别为侧棱的中点,有下列结论:①平面;②平面平面;③;④直线与直线所成角的大小为其中正确结论的序号是______.(写出所有正确结论的序号)13.已知,,向量与的夹角为,则________14.记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是__________15.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的16.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值;(2)求的值.18.已知(1)当时,解关于的不等式;(2)当时,解关于的不等式19.如图所示,某居民小区内建一块直角三角形草坪,直角边米,米,扇形花坛是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路和,考虑到小区整体规划,要求M、N在斜边上,O在弧上(点O异于D,E两点),,.(1)设,记,求的表达式,并求出此函数的定义域.(2)经核算,两条路每米铺设费用均为400元,如何设计的大小,使铺路的总费用最低?并求出最低总费用.20.对于函数,若在其定义域内存在实数,,使得成立,则称是“跃点”函数,并称是函数的1个“跃点”(1)求证:函数在上是“1跃点”函数;(2)若函数在上存在2个“1跃点”,求实数的取值范围;(3)是否同时存在实数和正整数使得函数在上有2022个“跃点”?若存在,请求出和满足的条件;若不存在,请说明理由21.已知,,函数.(1)当时,求不等式的解集;(2)若,求的最小值,并求此时a,b的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程2、A【解析】因为<,所以,选A.3、D【解析】由题意可得,由的范围可得的范围,再求其补集即可求解.【详解】由可得,因为,所以,若命题“存在,使得等式成立”是假命题,则实数的取值范围是,故选:D.4、B【解析】根据圆的一般方程得出圆的标准方程,并且得圆的圆心和半径,计算两圆圆心的距离后就可以求解.【详解】由题意知:圆:,的坐标是,半径是,圆:,的坐标是,半径是.所以,因此两圆相离,所以最小值为.故选:B5、A【解析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:,则.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.6、D【解析】根据对数的运算法则,化简可得,分析即可得答案.【详解】由题意得,当时,的最小值为.故选:D7、C【解析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案.【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为,因此,秒针的端点所走的路线长.故选:C.【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题.8、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.9、D【解析】先将函数的解析式化为,再利用三角函数图象的变换规律得出正确选项.【详解】,因此,将函数的图象向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变),可得到函数的图象,故选D.【点睛】本题考查三角函数的图象变换,处理这类问题的要注意以下两个问题:(1)左右平移指的是在自变量上变化了多少;(2)变换时两个函数的名称要保持一致.10、B【解析】直接利用两个集合的交集的定义求得M∩N【详解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},则M∩N={x|-1≤x<2},故选B【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.12、①②③【解析】连接AC,易得PC∥OM,可判结论①证得平面PCD∥平面OMN,可判结论②正确由勾股数可得PC⊥PA,得到OM⊥PA,可判结论③正确根据线线平行先找到直线PD与直线MN所成的角为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,可判④错误【详解】如图,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确同理PD∥ON,所以平面PCD∥平面OMN,结论②正确由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论③正确由于M,N分别为侧棱PA,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,故④错误故答案为①②③【点睛】本题考查线面平行、面面平行,考查线线角,考查学生分析解决问题的能力,属于中档题13、1【解析】由于.考点:平面向量数量积;14、4、5、6【解析】根据偶函数,是正整数,推断出的取值范围,相邻的两个的距离是,依照题意列不等式组,求出的值【详解】由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1∴,解得,又,∴.答案:【点睛】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解的意义,强调抽象思维与灵活应变的能力15、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx16、②③【解析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据正切的差角公式求得,再利用正切的二倍角公式可求得答案;(2)根据同角三角函数的关系和正弦,余弦的二倍角公式,代入可得答案【详解】(1)因为,所以,即,解得,所以,所以,(2)18、(1)或;(2)答案不唯一,具体见解析.【解析】(1)先因式分解,进而解出的范围,进而结合指数函数的单调性求得答案;(2)设,然后因式分解,进而讨论a的取值范围求出t的范围,最后结合指数函数的单调性求得答案.【小问1详解】当时,若可得或,即解集为或【小问2详解】令,不等式转化为①当时,不等式解集为;②当时,不等式解集为或;③当时,不等式解集为;④当时,不等式解集为或.综上所述,当时,解集为;当时,解集为或;当时,解集为;当时,解集为或.19、(1),;(2),.【解析】(1)过作的垂线交与两点,求出,即可求出的表达式,并求出此函数的定义域.(2)利用辅助角公式化简,即可得出结果.【详解】(1)如图,过作的垂线交与两点,则,,,,,则,,所以,,(2),,当,即时,总费用最少为.20、(1)证明见详解(2)(3)存在,或或【解析】(1)将要证明问题转化为方程在上有解,构造函数转化为函数零点问题,结合零点存在性定理可证;(2)原问题等价于方程在由两个根,然后构造二次函数,转化为零点分布问题可解;(3)将问题转化为方程在上有2022个实数根,再转化为两个函数交点个数问题,然后可解.【小问1详解】因为整理得,令,因为,所以在区间有零点,即存在,使得,即存在,使得,所以,函数在上是“1跃点”函数【小问2详解】函数在上存在2个“1跃点”方程在上有两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论