版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省阜新市新邱区阜新二中2026届数学高一上期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线经过第一、二、四象限,则a、b、c应满足()A. B.C. D.2.已知平面直角坐标系中,的顶点坐标分别为,,,G为所在平面内的一点,且满足,则G点的坐标为()A. B.C. D.3.设集合,3,,则正确的是A.3, B.3,C. D.4.设,且,则下列不等式一定成立的是()A. B.C. D.5.已知关于的不等式的解集是,则的值是()A. B.2C.22 D.6.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面7.函数的部分图象大致是图中的()A.. B.C. D.8.已知圆心在轴上的圆与直线切于点.若直线与圆相切,则的值为()A.9 B.7C.-21或9 D.-23或79.的值为A. B.C. D.10.函数的部分图象如图所示,则A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)12.若直线l在x轴上的截距为1,点到l的距离相等,则l的方程为______.13.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围14.________15.已知,,当时,关于的不等式恒成立,则的最小值是_________16.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围.18.已知全集U=R,集合,,求:(1)A∩B;(2).19.已知,且是第四象限角.(1)求和的值;(2)求的值;20.已知函数f(x)=lg(3+x)+lg(3-x)(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由21.设,.(1)求的值;(2)求与夹角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据直线经过第一、二、四象限判断出即可得到结论.【详解】由题意可知直线的斜率存在,方程可变形为,∵直线经过第一、二、四象限,∴,∴且故选:A.2、A【解析】利用向量的坐标表示以及向量坐标的加法运算即可求解.【详解】由题意易得,,,.即G点的坐标为,故选:A.3、D【解析】根据集合的定义与运算法则,对选项中的结论判断正误即可【详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确故选D【点睛】本题考查了集合的定义与运算问题,属于基础题4、D【解析】利用特殊值及不等式的性质判断可得;【详解】解:因为,对于A,若,,满足,但是,故A错误;对于B:当时,,故B错误;对于C:当时没有意义,故C错误;对于D:因为,所以,故D正确;故选:D5、C【解析】转化为一元二次方程两根问题,用韦达定理求出,进而求出答案.【详解】由题意得:2与3是方程的两个根,故,,所以.故选:C6、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.7、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题8、D【解析】先求得圆的圆心和半径,根据直线若直线与圆相切,圆心到直线的距离等于半径列方程,解方程求得的值.【详解】圆心在轴上圆与直线切于点.可得圆的半径为3,圆心为.因为直线与圆相切,所以由切线性质及点到直线距离公式可得,解得或7.故选:D【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.9、C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故选C.10、A【解析】由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图象与性质【名师点睛】根据图象求解析式问题的一般方法是:先根据函数图象的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值二、填空题:本大题共6小题,每小题5分,共30分。11、③④【解析】根据新定义进行判断.【详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④12、或【解析】考虑斜率不存在和存在两种情况,利用点到直线距离公式计算得到答案.【详解】显然直线轴时符合要求,此时的方程为.当直线l的斜率存在时,设直线l的斜率为k,则l的方程为,即.∵A,B到l的距离相等∴,∴,∴,∴直线l的方程为.故答案为或【点睛】本题考查了点到直线的距离公式,忽略掉斜率不存在的情况是容易犯的错误.13、(1)(2)【解析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是14、【解析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【详解】.故答案为:.15、4【解析】由题意可知,当时,有,所以,所以点睛:本题考查基本不等式的应用.本题中,关于的不等式恒成立,则当时,有,得到,所以.本题的关键是理解条件中的恒成立16、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由条件列关于a,b,c的方程,解方程求a,b,c,由此可得函数的解析式,(2)由已知可得在上恒成立,即,由此可求m的范围.【详解】解:(1)由得,.∴又∵,∴即∴∴∴(2)不等式等价于即∵函数在上的最大值为∴.18、(1);(2)(-∞,3)∪[4,+∞)【解析】(1)化简集合B,直接求交集即可;(2)求出集合B的补集,进而求并集即可.【详解】(1)由已知得:B=(-∞,3),A=[1,4),∴A∩B=[1,3)(2)由已知得:=(-∞,1)∪[4,+∞),∴()∪B=(-∞,3)∪[4,+∞)【点睛】本题考查集合的基本运算,借助数轴是求解交、并、补集的好方法,常考题型19、(1),;(2).【解析】(1)根据象限和公式求出的正弦,再用倍角公式计算即可(2)求出角正切值,再展开,代入计算即可.【详解】解:(1),由得,,又是第四象限角,,,,.(2)由(1)可知,,.20、(1);(2)偶函数,理由详见解析【解析】(1)求定义域,通常就是求使函数式有意义的自变量取值集合,所以只要满足各项都有意义即可,对数型的函数求值域,关键求出真数部分的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卷板机操作工发展趋势测试考核试卷含答案
- 砖瓦成型工岗前安全教育考核试卷含答案
- 烧结成品工岗前竞争分析考核试卷含答案
- 数控等离子切割机操作工操作知识测试考核试卷含答案
- 海底管道保温工岗前核心管理考核试卷含答案
- 普通铣工复测评优考核试卷含答案
- 轻钢龙骨制作工安全演练强化考核试卷含答案
- 松香工安全教育考核试卷含答案
- 育婴员QC管理模拟考核试卷含答案
- 潜水救生员8S考核试卷含答案
- 假发材料购销合同范本
- 长途代驾安全培训内容课件
- 销售团队激励奖金分配方案
- 社工专业知识培训活动课件
- 四川省成都市树德实验中学2026届数学八上期末联考试题含解析
- 2024年中小学生食品安全知识问答题库
- 收购发票培训课件
- 《全过程工程咨询方案》
- 岩石钻拖管专项施工方案
- 交通运输行业数据集建设实施方案
- 年会礼仪小姐培训
评论
0/150
提交评论