版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省华中师大第一附中数学高一上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边经过点,则的值为()A. B.C. D.2.若是的重心,且(,为实数),则()A. B.1C. D.3.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位4.过点和,圆心在轴上的圆的方程为A. B.C D.5.若,都为正实数,,则的最大值是()A. B.C. D.6.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.7.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+C.48D.8.在中,为边的中点,则()A. B.C. D.9.平行于同一平面的两条直线的位置关系是A.平行 B.相交或异面C.平行或相交 D.平行、相交或异面10.已知正方体外接球的表面积为,正方体外接球的表面积为,若这两个正方体的所有棱长之和为,则的最小值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“,”的否定是___________.12.已知角的终边经过点,且,则t的值为______13.已知函数,若函数恰有4个不同的零点,则实数的取值范围是________.14.已知向量,,则向量在方向上的投影为___________.15.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.16.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.18.已知函数(1)求的值及的单调递增区间;(2)求在区间上的最大值和最小值,以及取最值时x的值19.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+20.如图,在四边形中,,,,为等边三角形,是的中点.设,.(1)用,表示,,(2)求与夹角的余弦值.21.已知,函数.(1)若关于的不等式对任意恒成立,求实数的取值范围;(2)若关于的方程有两个不同实数根,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据三角函数定义求解即可.【详解】因为角的终边经过点,所以,,所以.故选:D2、A【解析】若与边的交点为,再由三角形中线的向量表示即可.【详解】若与边交点为,则为边上的中线,所以,又因为,所以故选:A【点睛】此题为基础题,考查向量的线性运算.3、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同4、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.5、D【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D6、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.7、B【解析】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.8、B【解析】由平面向量的三角形法则和数乘向量可得解【详解】由题意,故选:B【点睛】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题9、D【解析】根据线面平行的位置关系及线线位置关系的分类及定义,可由已知两直线平行于同一平面,得到两直线的位置关系【详解】解:若,且则与可能平行,也可能相交,也有可能异面故平行于同一个平面的两条直线的位置关系是平行或相交或异面故选【点睛】本题考查的知识点是空间线线关系及线面关系,熟练掌握空间线面平行的位置关系及线线关系的分类及定义是详解本题的关键,属于基础题10、B【解析】设正方体的棱长为,正方体的棱长为,然后表示出两个正方体外接球的表面积,求出化简变形可得答案【详解】解:设正方体的棱长为,正方体的棱长为因为,所以,则因为,所以,因为,所以,故当时,取得最小值,且最小值为故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”12、##0.5625【解析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.13、【解析】本题首先可根据函数解析式得出函数在区间和上均有两个零点,然后根据在区间上有两个零点得出,最后根据函数在区间上有两个零点解得,即可得出结果.【详解】当时,令,得,即,该方程至多两个根;当时,令,得,该方程至多两个根,因为函数恰有4个不同的零点,所以函数在区间和上均有两个零点,函数在区间上有两个零点,即直线与函数在区间上有两个交点,当时,;当时,,此时函数的值域为,则,解得,若函数在区间上也有两个零点,令,解得,,则,解得,综上所述,实数的取值范围是,故答案为:.【点睛】本题考查根据函数零点数目求参数的取值范围,可将其转化为两个函数的交点数目进行求解,考查函数最值的应用,考查推理能力与计算能力,考查分类讨论思想,是难题.14、【解析】直接利用投影的定义求在方向上的投影.【详解】因为,,设与夹角为,,则向量在方向上的投影为:.所以在方向上投影为故答案为:.15、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.16、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函数即可解得,需要检验;(Ⅱ)由得,进而得,令,得,结合的范围求解即可.试题解析:(Ⅰ)经检验成立.(Ⅱ).,设设..当时,成立.当时,成立.当时,不成立,舍去.综上所述,实数的取值范围是.18、(1)1,,(2)时,有最大值;时,有最小值.【解析】(1)将化简为,解不等式,,即可得函数的单调递增区间;(2)由,得,从而根据正弦型函数的图象与性质,即可求解函数的最值【小问1详解】解:因为,,令,,得,,所以的单调递增区间为,;【小问2详解】解:因为,所以,所以,所以,当,即时,有最大值,当,即时,有最小值19、(1)sinα=(2)713【解析】(1)解方程组sin2(2)直接利用诱导公式化简求值.【小问1详解】解:因为tanα=-5又sin2α+所以sinα=【小问2详解】解:sin=-20、(1),;(2).【解析】(1)利用向量的线性运算即平面向量基本定理确定,与,的关系;(2)解法一:利用向量数量积运算公式求得向量夹角余弦值;解法二:建立平面直角坐标系,利用数量积的坐标表示确定向量夹角余弦值.【详解】解法一:(1)由图可知.因为E是CD的中点,所以.(2)因为,为等边三角形,所以,,所以,所以,.设与的夹角为,则,所以在与夹角的余弦值为.解法二:(1)同解法一.(2)以A为原点,AD所在直线为x轴,过A且与AD垂直的直线为y轴建立平面直角坐标系,则,,,.因为E是CD的中点,所以,所以,,所以,.设与的夹角为,则,所以与夹角的余弦值为.【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用21、(1);(2).【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46722-2025航空航天用MJ螺纹六角自锁螺母尺寸
- 2025年中职(环境化学)污染物降解实验综合测试题及答案
- 数学好玩《尝试与猜测》(教学课件)-五年级 数学上册 北师大版
- 工程用工安全培训课件
- 工程档案培训课件
- 工程施工安全培训教育
- 制浆车间安全培训课件
- 工程公司安全培训报道稿课件
- 手术AI在胸外科手术中的精准切割
- 房颤合并肥胖患者的术前减重策略
- 骨干教师的成长课件
- 湿地公园运营投标方案(技术标)
- 部编版道德与法治五年级上册全册复习选择题100道汇编附答案
- 四川省遂宁市2024届高三上学期零诊考试高三理综(生物)
- 工程项目施工管理工作流程
- 房地产开发公司建立质量保证体系情况说明
- 伤口造口院内专科护士护理考核试题与答案
- JJF 1759-2019衰减校准装置校准规范
- 群文阅读把数字写进诗
- 医用设备EMC培训资料课件
- 锅炉防磨防爆工作专项检查方案
评论
0/150
提交评论