版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合肥市重点中学2026届高二数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.观察数列,(),,()的特点,则括号中应填入的适当的数为()A. B.C. D.2.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.3.已知等比数列中,,,则公比()A. B.C. D.4.下列椭圆中,焦点坐标是的是()A. B.C. D.5.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数6.已知在平面直角坐标系中,圆的方程为,直线过点且与直线垂直.若直线与圆交于两点,则的面积为A.1 B.C.2 D.7.圆的圆心和半径分别是()A. B.C. D.8.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列9.已知长方体的底面ABCD是边长为8的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.10.若点,在抛物线上,是坐标原点,若等边三角形的面积为,则该抛物线的方程是()A. B.C. D.11.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.12.已知抛物线C:的焦点为F,过点P(-1,0)且斜率为的直线l与抛物线C相交于A,B两点,则()A. B.14C. D.15二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为____14.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.15.某人实施一项投资计划,从2021年起,每年1月1日,把上一年工资的10%投资某个项目.已知2020年他的工资是10万元,预计未来十年每年工资都会逐年增加1万元;若投资年收益是10%,一年结算一次,当年的投资收益自动转入下一年的投资本金,若2031年1月1日结束投资计划,则他可以一次性取出的所有投资以及收益应有__________万元.(参考数据:,,)16.已知数列是递增等比数列,,则数列的前项和等于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点和直线.(1)求以为圆心,且与直线相切的圆的方程;(2)过直线上一点作圆的切线,其中为切点,求四边形PAMB的面积的最小值.18.(12分)在平面直角坐标系中,设点,直线,点P在直线l上移动,R是线段PF与y轴的交点,也是PF的中点.,(1)求动点Q的轨迹的方程E;(2)过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求直线MN过定点R的坐标19.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.20.(12分)已知是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)数列通项公式为,求数列的前n项和.21.(12分)已知函数(1)求关于x的不等式的解集;(2)若对任意的,恒成立,求实数a的取值范围22.(10分)已知函数在处取得极值(1)若对任意正实数,恒成立,求实数的取值范围;(2)讨论函数的零点个数
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用观察法可得,即得.【详解】由题可得数列的通项公式为,∴.故选:D2、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D3、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.4、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B5、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.6、A【解析】∵圆的方程为,即,∴圆的圆心为,半径为2.∵直线过点且与直线垂直∴直线.∴圆心到直线的距离.∴直线被圆截得的弦长,又∵坐标原点到的距离为,∴的面积为.考点:1、直线与圆的位置关系;2、三角形的面积公式.7、B【解析】将圆的方程化成标准方程,即可求解.【详解】解:.故选:B.8、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题9、A【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为8的正方形,,∴,,,因为,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:A.10、A【解析】根据等边三角形的面积求得边长,根据角度求得点的坐标,代入抛物线方程求得的值.【详解】设等边三角形的边长为,则,解得根据抛物线的对称性可知,且,设点在轴上方,则点的坐标为,即,将代入抛物线方程得,解得,故抛物线方程为故选:A11、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C12、C【解析】设A、B两点的坐标分别为,,根据抛物线的定义求出,然后将直线的方程代入抛物线方程并化简,进而结合根与系数的关系求得答案.【详解】设A、B两点坐标分别为,,直线的方程为,抛物线的准线方程为:,由抛物线定义可知:.联立方程,消去y后整理为,可得,,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据已知条件求得,由此求得实轴长.【详解】由于,双曲线的渐近线方程为,所以双曲线的渐近线与轴夹角小于,由得,实轴长故答案为:14、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.15、24【解析】根据条件求得每一年投入在最终结算时的总收入,利用错位相减法求得总收入.【详解】由题知,2021年的投入在结算时的收入为,2022年的投入在结算时的收入为,,2030年的投入在结算时的收入为,则结算时的总投资及收益为:①,则②,由①-②得,,则,故答案为:2416、【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和,故答案为.考点:1.等比数列的性质;2.等比数列的前项和公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用到直线的距离求得半径,由此求得圆的方程.(2)结合到直线的距离来求得四边形面积的最小值.【小问1详解】圆的半径,圆的方程为.【小问2详解】由四边形的面积知,当时,面积最小.此时...18、(1)(2)【解析】(1)由图中的几何关系可知,故可知动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即可直接写出抛物线的方程;(2)设出直线AB的方程,把点、的坐标代入抛物线方程,两式作差后,再利用中点坐标公式求出点M的坐标,同理求出点的坐标,即可求出直线MN的方程,最后可求出直线MN过哪一定点.【小问1详解】∵直线的方程为,点R是线段FP的中点且,∴RQ是线段FP的垂直平分线,∵,∴是点Q到直线l的距离,∵点Q在线段FP的垂直平分线,∴,则动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即动点Q轨迹的方程为.【小问2详解】设,,由题意直线AB斜率存在且不为0,设直线AB的方程为,由已知得,两式作差可得,即,则,代入可得,即点M的坐标为,同理设,,直线的方程为,由已知得,两式作差可得,即,则,代入可得,即点的坐标为,则直线MN的斜率为,即方程为,整理得,故直线MN恒过定点.19、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合面积公式即可求解小问1详解】由题意点的轨迹是以为焦点,直线为准线的抛物线,所以,则,所以动点的轨迹方程是.【小问2详解】由已知直线的方程是,设、,由得,,所以,则,故,20、(1);(2).【解析】(1)设的公比为,利用基本量运算求出公比,可得数列的通项公式;(2)利用错位相减法计算出数列的前n项和【详解】(1)设的公比为,由题意知:,.又,解得,,所以.(2).令,则,因此,又,两式相减得所以.【点睛】方法点睛:本题考查等比数列的通项公式,考查数列的求和,数列求和的方法总结如下:
公式法,利用等差数列和等比数列的求和公式进行计算即可;
裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;
错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;
倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和21、(1)答案见解析(2)【解析】(1)求出对应方程的根,再根据根的大小进行讨论,即可得解;(2)对任意的,恒成立,即恒成立,结合基本不等式求出的最小值即可得解.【小问1详解】解:由已知易得即为:,令可得与,所以,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;【小问2详解】解:由可得,由,得,所以可得,,当且仅当,即时等号成立,所以,所以的取值范围是.22、(1)(2)答案见解析.【解析】(1)根据极值点求出,再利用导数求出的最大值,将不等式恒成立化为最大值成立可求出结果;(2)利用导数求出函数的极大、极小值,结合函数的图象分类讨论可得结果.【小问1详解】函数的定义域为,因为,且在处取得极值,所以,即,得,此时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学创客课程《3D创意设计》校本教材开发与教学实践探究
- 小型望远镜近地小天体自动观测方法:技术、挑战与实践探索
- 2026年智慧城市交通管理服务合同协议
- 云计算2026年服务器租赁服务协议
- 2026年内部审计管理合同协议
- 2026年金融科技垂直整合业务合同协议
- 呼叫中心2026年电话销售授权协议
- 按摩浴缸县域市场调研
- 红楼花园整合传播策划案
- 2026年车辆健康监测系统项目评估报告
- 私域流量课件
- 2025年杭州余杭水务有限公司招聘36人笔试备考试题及答案解析
- 知识点及2025秋期末测试卷(附答案)-冀美版小学美术四年级上册
- 英语试卷河北省2026届高三第一次八省联考(T8联考)(12.24-12.25)
- 2025年中共赣州市赣县区委政法委下属事业单位面向全区选调工作人员备考题库有答案详解
- 2025年幼儿园后勤工作总结
- 知识点及2025秋期末测试卷(附答案)-浙美版(新教材)小学美术三年级上册
- 2025山西大地环境投资控股有限公司社会招聘116人备考笔试题库及答案解析
- 机器人手术术后引流管管理的最佳实践方案
- 2025年产品质量复盘与2026年品控升级指南
- 2025年瓦检员考试题库及答案
评论
0/150
提交评论