辽宁省朝阳市凌源市凌源三中2026届数学高二上期末联考试题含解析_第1页
辽宁省朝阳市凌源市凌源三中2026届数学高二上期末联考试题含解析_第2页
辽宁省朝阳市凌源市凌源三中2026届数学高二上期末联考试题含解析_第3页
辽宁省朝阳市凌源市凌源三中2026届数学高二上期末联考试题含解析_第4页
辽宁省朝阳市凌源市凌源三中2026届数学高二上期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省朝阳市凌源市凌源三中2026届数学高二上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,若,其中是自然对数底,则()A. B.C. D.2.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96 B.97C.98 D.993.甲、乙、丙、丁四位同学一起去找老师询问成语竞赛的成绩.老师说:你们四人中有位优秀,位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙、丁可以知道对方的成绩C.乙可以知道四人的成绩 D.丁可以知道四人的成绩4.下列双曲线中,渐近线方程为的是A. B.C. D.5.已知数列满足,则满足的的最大取值为()A.6 B.7C.8 D.96.已知函数在处取得极值,则的极大值为()A. B.C. D.7.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题8.已知函数,则()A. B.C. D.9.均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线均匀压缩,可用曲线上点的坐标来描述.设曲线上任意一点,若将曲线纵向均匀压缩至原来的一半,则点的对应点为.同理,若将曲线横向均匀压缩至原来的一半,则曲线上点的对应点为.若将单位圆先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的,得到的曲线方程为()A. B.C. D.10.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.611.已知椭圆的左、右顶点分别为,上、下顶点分别为.点为上不在坐标轴上的任意一点,且四条直线的斜率之积大于,则的离心率的取值范围是()A. B.C. D.12.一个袋中装有大小和质地相同的5个球,其中有2个红色球,3个绿色球,从袋中不放回地依次随机摸出2个球,下列结论正确的是()A.第一次摸到绿球的概率是 B.第二次摸到绿球的概率是C.两次都摸到绿球的概率是 D.两次都摸到红球的概率是二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线在处的切线方程为,则________14.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________15.点到抛物线上的点的距离的最小值为________.16.从甲、乙、丙、丁4位同学中,选出2位同学分别担任正、副班长的选法数可以用表示为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由18.(12分)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离19.(12分)(1)已知等轴双曲线的上顶点到一条渐近线的距离为,求此双曲线的方程;(2)已知抛物线的焦点为,设过焦点且倾斜角为的直线交抛物线于,两点,求线段的长20.(12分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值21.(12分)锐角中满足,其中分别为内角的对边(I)求角;(II)若,求的取值范围22.(10分)已知集合,.(1)当a=3时,求.(2)若“”是“x∈A”的充分不必要条件,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用函数的单调性可得正确的选项.【详解】令,因为均为,故为上的增函数,由可得,故,故选:A.2、C【解析】令,利用倒序相加原理计算即可得出结果.【详解】令,,两式相加得:,∴,故选:C3、A【解析】分析可知乙、丙的成绩中必有位优秀、位良好,结合题意进行推导,可得出结论.【详解】由于个人中的成绩中有位优秀,位良好,甲知道乙、丙的成绩,还是不知道自己的成绩,则乙、丙的成绩必有位优秀、位良好,甲、丁的成绩中必有位优秀、位良好,因为给乙看丙的成绩,则乙必然知道自己的成绩,丁知道甲的成绩后,必然知道自己的成绩.故选:A.4、A【解析】由双曲线的渐进线的公式可行选项A的渐进线方程为,故选A.考点:本题主要考查双曲线的渐近线公式.5、B【解析】首先地推公式变形,得,,求得数列的通项公式后,再解不等式.【详解】因为,两边取倒数,得,整理为:,,所以数列是首项为1,公差为4的等差数列,,,因为,即,得,解得:,,所以的最大值是7.故选:B6、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B7、A【解析】根据复合命题的真假表即可得出结果.【详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A8、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.9、C【解析】设单位圆上一点为,经过题设变换后坐标为,则,代入圆的方程即可得曲线方程.【详解】由题设,单位圆上一点坐标为,经过横向均匀压缩至原来的一半,纵向均匀压缩至原来的,得到对应坐标为,∴,则,故中,可得:.故选:C.10、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.11、A【解析】设,求得,得到,求得,结合,即可求解.【详解】由椭圆的方程,可得,设,则,由,因为四条直线的斜率之积大于,即,所以,则离心率,又因为椭圆离心率,所以椭圆的离心率的取值范围是.故选:A.12、C【解析】对选项A,直接求出第一次摸球且摸到绿球的概率;对选项B,第二次摸到绿球分两种情况,第一次摸到绿球且第二也摸到绿球和第一次摸到红球且第二次摸到绿球;对选项C,直接求出第一次摸到绿球且第二也摸到绿球的概率;对选项D,直接求出第一次摸到红球且第二也摸到红球的概率【详解】对选项A,第一次摸到绿球的概率为:,故错误;对选项B,第二次摸到绿球的概率为:,故错误;对选项C,两次都摸到绿球的概率为:,故正确;对选项D,两次都摸到红球的概率为:,故错误故选:C二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】先求导,由,代入即得解【详解】由题意,故答案为:114、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:15、【解析】设出抛物线上点的坐标,利用两点间距离公式,配方求出最小值.【详解】设抛物线上的点坐标,则,当时,取得最小值,且最小值为.故答案为:16、【解析】由题意知:从4为同学中选出2位进行排列,即可写出表示方式.【详解】1、从4位同学选出2位同学,2、把所选出的2位同学任意安排为正、副班长,∴选法数为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.18、(1)见解析;(2)【解析】(1)作出如图所示空间直角坐标系,根据题中数据可得、、的坐标,利用垂直向量数量积为零的方法算出平面、平面的法向量分别为,,和,1,,算出,可得,从而得出平面平面;(2)由(1)中求出的平面法向量,,与向量,2,,利用点到平面的距离公式加以计算即可得到点到平面的距离【详解】(1)证明:平面,,、、两两互相垂直,如图所示,分别以、、所在直线为轴、轴和轴建立空间直角坐标系,则,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,设,,是平面的一个法向量,可得,取,得,,,,是平面的一个法向量,同理可得,1,是平面的一个法向量,,,即平面的法向量与平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一个法向量,,2,,得,点到平面的距离19、(1);(2)8.【解析】(1)由等轴双曲线的一条渐近线方程为,再由点到直线距离公式求解即可;(2)求得直线方程代入抛物线,结合焦点弦长求解即可.【详解】(1)由等轴双曲线的一条渐近线方程为,且顶点到渐近线的距离为,可得,解得,故双曲线方程(2)抛物线的焦点为直线的方程为,即与抛物线方程联立,得,消,整理得,设其两根为,,且由抛物线的定义可知,所以,线段的长是【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式20、(1)(2)【解析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.【小问1详解】由题意可得,圆心为(2,0),半径为2.则圆的方程为;【小问2详解】由(1)可知:圆C半径为,设圆心(2,0)到l的距离为d,则,由垂径定理得:21、(I);(II)【解析】(I)由正弦定理边角互化并整理得,进而由余弦定理得;(II)正弦定理得,故,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论