版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省自贡市2026届数学高一上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量,,,则A. B.C. D.2.已知函数在上存在零点,则的取值范围为()A. B.C. D.3.若条件p:,q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件4.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.6.命题“∀x∈R,都有x2-x+3>0A.∃x∈R,使得x2-x+3≤0 B.∃x∈RC.∀x∈R,都有x2-x+3≤0 D.∃x∉R7.函数y=ln(1﹣x)的图象大致为()A. B.C. D.8.函数f(x)=lnx+3x-4的零点所在的区间为()A. B.C. D.9.已知集合,若,则()A.-1 B.0C.2 D.310.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.12._____.13.已知实数,执行如图所示的流程图,则输出的x不小于55的概率为________14.已知,,则的值为15.已知直线经过点,且与直线平行,则直线的方程为__________16.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为(1)求;(2)若,求数列的前项的和18.已知直线和点,设过点且与平行的直线为.(1)求直线的方程;(2)求点关于直线的对称点19.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积20.用定义法证明函数在上单调递增21.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,由此可推出【详解】解:∵,,,∴,,,,故选:A【点睛】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题2、A【解析】根据零点存在定理及函数单调性可知,,解不等式组即可求得的取值范围.【详解】因为在上单调递增,根据零点存在定理可得,解得.故选:A【点睛】本题考查了函数单调性的判断,零点存在定理的应用,根据零点所在区间求参数的取值范围,属于基础题.3、B【解析】由条件推结论可判断充分性,由结论推条件可判断必要性【详解】由不能推出,例如,但必有,所以p是q成立的必要不充分条件.故选:B.4、C【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.5、D【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D6、A【解析】根据全称命题的否定表示方法选出答案即可.【详解】命题“∀x∈R,都有x2“∃x∈R,使得x2故选:A.7、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.8、B【解析】根据函数零点的判定定理可得函数的零点所在的区间【详解】解:函数在其定义域上单调递增,(2),(1),(2)(1)根据函数零点的判定定理可得函数的零点所在的区间是,故选【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题9、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C10、B【解析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.12、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题13、【解析】设实数x∈[1,9],经过第一次循环得到x=2x+1,n=2,经过第二循环得到x=2(2x+1)+1,n=3,经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x,输出的值为8x+7,令8x+7⩾55,得x⩾6,由几何概型得到输出的x不小于55的概率为.故答案为.14、3【解析】,故答案为3.15、【解析】设与直线平行的直线,将点代入得.即所求方程为16、【解析】正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为考点:正四棱柱外接球表面积三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由条件求得数列是等差数列,由首项和公差求得.(2)由(1)求得通项,代入求得,分组求和求得.【详解】解:(1)因为,所以是公差为2,首项为2的等差数列所以(2)由(1)可知,因为,所以,所以18、(1)x+2y-3=0(2)B(2,-2)【解析】(1)根据两直线平行则斜率相同,再将点代入即可求出直线的方程;(2)设出所求点的坐标,可表示出中点的坐标,再根据点关于直线的对称性质可得方程组,即可求出对称点的坐标.试题解析:(1)设,点代入∴:(2)设,则,的中点∴∴∴19、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直线l的距离,所以因为N到直线l的距离所以20、详见解析【解析】根据题意,将函数的解析式变形有,设,由作差法分析可得结论详解】证明:,设,则,又由,则,,,则,则函数上单调递增【点睛】本题考查函数单调性的证明,注意定义法证明函数单调性的步骤,属于基础题.21、(1)的最大值,(2)【解析】(1)根据的范围可得的范围,可得的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 未来五年养老金信托企业县域市场拓展与下沉战略分析研究报告
- 《焊接方法与设备》-《焊接方法与设备》-项目3
- 银行智能系统与大模型的协同发展
- 职场里的诗与演技
- 新能源汽车高压系统检修课件 任务五学习活动4 充电设备故障检测与排除
- 反恐网络安全培训课件
- 蒙氏幼儿园教师教学总结模板
- 工厂车间生产线优化改造方案
- 反恐安全负责人资质培训
- 工业企业环保达标检验流程
- 2025-2030中国网球行业市场发展趋势与前景展望战略研究报告
- QHDCTS0001-2024中国电信移动终端需求白皮书手持卫星终端分册(2024v1)
- GB/T 3091-2025低压流体输送用焊接钢管
- SJG01-2010地基基础勘察设计规范
- 八年级下册英语2025电子版人教版单词表
- 精准教育转化罪犯
- 南大版一年级心理健康第8课《学习的乐趣》课件
- DB37-T4658.2-2023人工智能 应用场景分类 第2部分:装备制造-编制说明
- 丰胸培训课件
- 广东六校2025届高三第三次联考英语试题(含答案)
- 2024年世界职业院校技能大赛中职组“婴幼儿保育组”赛项考试题库-下(多选、判断题)
评论
0/150
提交评论