2026届苏州市重点中学数学高二上期末质量跟踪监视试题含解析_第1页
2026届苏州市重点中学数学高二上期末质量跟踪监视试题含解析_第2页
2026届苏州市重点中学数学高二上期末质量跟踪监视试题含解析_第3页
2026届苏州市重点中学数学高二上期末质量跟踪监视试题含解析_第4页
2026届苏州市重点中学数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届苏州市重点中学数学高二上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.2.已知数列的前项和为,满足,,,则()A. B.C.,,成等差数列 D.,,成等比数列3.双曲线的左、右焦点分别为、,P为双曲线C的右支上一点.以O为圆心a为半径的圆与相切于点M,且,则该双曲线的渐近线为()A. B.C. D.4.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.25.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32 B.0.48C.0.68 D.0.826.某公司要建造一个长方体状的无盖箱子,其容积为48m3,高为3m,如果箱底每1m2的造价为15元,箱壁每1m2造价为12元,则箱子的最低总造价为()A.72元 B.300元C.512元 D.816元7.若,,,则a,b,c与1的大小关系是()A. B.C. D.8.已知,,若,则()A.6 B.11C.12 D.229.已知点,点在抛物线上,过点的直线与直线垂直相交于点,,则的值为()A. B.C. D.10.已知双曲线C的离心率为,则双曲线C的渐近线方程为()A. B.C. D.11.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.12.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_______.14.已知斜率为的直线与椭圆相交于不同的两点A,B,M为y轴上一点且满足|MA|=|MB|,则点M的纵坐标的取值范围是___________.15.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______16.曲线的一条切线的斜率为,该切线的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.18.(12分)双曲线,离心率,虚轴长为2(1)求双曲线的标准方程;(2)经过点的直线与双曲线相交于两点,且为的中点,求直线的方程19.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求20.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值21.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形,(1)证明:是的中点;(2)求二面角的大小22.(10分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.2、C【解析】写出数列前几项,观察规律,找到数列变化的周期,再依次去判断各项的说法即可解决.【详解】数列中,,,,则此数列为1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即数列的各项是周期为6数值循环重复的一列数,选项A:,,则.判断错误;选项B:由,可知当时,.判断错误;选项C:,则,即,,成等差数列.判断正确;选项D:,,则,,即,,不能构成等比数列.判断错误.故选:C3、A【解析】连接、,利用中位线定理和双曲线定义构建参数关系,即求得渐近线方程.【详解】如图,连接、,∵M是的中点,∴是的中位线,∴,且,根据双曲线的定义,得,∴,∵与以原点为圆心a为半径的圆相切,∴,可得,中,,即得,,解得,即,得.由此得双曲线的渐近线方程为.故选:A.【点睛】本题考查了双曲线的定义的应用和渐近线的求法,属于中档题.4、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A5、C【解析】由题意可知,求出的值,从而可求出椭圆的离心率【详解】解:由题意得,解得,所以离心率,故选:C6、D【解析】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,则f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低总造价【详解】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,当且仅当x,即x=4时,f(x)取最小值816元故选:D7、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.8、C【解析】根据递推关系式计算即可求出结果.【详解】因为,,,则,,,故选:C.9、D【解析】由题,由于过抛物线上一点的直线与直线垂直相交于点,可得,又,故,所以的坐标为,由余弦定理可得.故选:D.考点:抛物线的定义、余弦定理【点睛】本题主要考查抛物线的定义与性质,考查学生的计算能力,属于中档题10、B【解析】根据双曲线的离心率,求出即可得到结论【详解】∵双曲线的离心率是,∴,即1+,即1,则,即双曲线的渐近线方程为,故选:B11、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A12、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.14、【解析】设直线的方程为,由消去并化简得,设,,,解得..由于,所以是垂直平分线与轴的交点,垂直平分线方程为,令得,由于,所以.也即的纵坐标的取值范围是.故答案为:15、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:16、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据△恰为等边三角形由题意知:得到,再利用抛物线的定义求解;(2)联立,结合韦达定理,根据的夹角为,由求解.【小问1详解】解:由题意知:,由抛物线的定义知:,由,解得,所以抛物线方程为;【小问2详解】设,由,得,则,,则,,因为向量的夹角为,所以,,则,且,所以,解得,所以实数的取值范围.18、(1)(2)【解析】(1)根据题意求出即可得出;(2)利用点差法求出直线斜率即可得出方程.【小问1详解】∵,,∴,,∵,∴,∴,∴双曲线的标准方程为;【小问2详解】设以定点为中点的弦的端点坐标为,可得,,由在双曲线上,可得:,两式相减可得以定点为中点的弦所在的直线斜率为:则以定点为中点的弦所在的直线方程为,即为,联立方程得:,,符合,∴直线的方程为:.19、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和20、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.21、(1)证明见解析;(2).【解析】(1)根据正棱柱的性质,结合线面垂直的判定定理、直角三角形的性质、正三角形的性质进行证明即可;(2)根据线面垂直的判定定理和性质,结合二面角的定义进行求解即可.【小问1详解】证明:在正三棱柱中,平面,平面,则,又是以为直角顶点的等腰直角三角形,则,且,平面,故平面,而平面,所以,又为正三角形,所以为的中点;【小问2详解】在正中,取的中点为,则,又平面,则,且,平面,故平面,取的中点为,且的中点为,则,故平面,而平面,所以,在等腰直角中,取的中点为,则,,平面,所以平面,而平面,所以,故为二面角平面角,又,则,,所以在中,,即:,故二面角的大小为.:22、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论