版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市示范初中2026届数学高一上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为的半圆卷成一个圆锥,则它的体积是()A. B.C. D.2.已知定义域为的单调递增函数满足:,有,则方程的解的个数为()A.3 B.2C.1 D.03.已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.4.不等式的解集是()A B.C.或 D.或5.已知正三棱锥P—ABC(顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A的截面与棱PB,PC分别交于点D和点E,则截面△ADE周长的最小值是()A. B.2C. D.26.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.7.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.8.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则9.已知,,则下列说法正确的是()A. B.C. D.10.已知扇形周长为,圆心角为,则扇形面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.12.已知函数若函数有三个不同的零点,且,则的取值范围是____13.已知关于的不等式的解集为,其中,则的最小值是___________.14.已知正实数x,y满足,则的最小值为______15.函数的定义域是________.16.已知,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且(1)证明函数在上是增函数(2)求函数在区间上的最大值和最小值18.已知函数(1)求函数的对称中心;(2)当时,求函数的值域19.中国茶文化博大精深,小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是,环境温度是,则经过时间(单位:分)后物体温度将满足:,其中为正的常数.小明与同学一起通过多次测量求平均值的方法得到初始温度为98℃的水在19℃室温中温度下降到相应温度所需时间如表所示:从98℃下降到90℃所用时间1分58秒从98℃下降到85℃所用时间3分24秒从98℃下降到80℃所用时间4分57秒(1)请依照牛顿冷却模型写出冷却时间(单位:分)关于冷却水温(单位:℃)函数关系,并选取一组数据求出相应的值(精确到0.01).(2)“碧螺春”用75℃左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,水煮沸后在19℃室温下为获得最佳口感大约冷却___________分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.A.5B.7C.10(参考数据:,,,,)20.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且,点P沿单位圆按逆时针方向旋转角后到达点.(1)求阴影部分的面积;(2)当时,求的值.21.2021年新冠肺炎疫情仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”、“拉姆达”、“奥密克戎”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.某科研机构对某变异毒株在一特定环境下进行观测,每隔单位时间进行一次记录,用表示经过单位时间的个数,用表示此变异毒株的数量,单位为万个,得到如下观测数据:123456(万个)1050250若该变异毒株的数量(单位:万个)与经过个单位时间的关系有两个函数模型与可供选择.(1)判断哪个函数模型更合适,并求出该模型的解析式;(2)求至少经过多少个单位时间该病毒的数量不少于1亿个.(参考数据:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】求出扇形的弧长,然后求出圆锥的底面周长,转化为底面半径,求出圆锥的高,然后求出体积.【详解】设底面半径为r,则,所以.所以圆锥高.所以体积.故选:C.【点睛】本题考查圆锥的性质及体积,圆锥问题抓住两个关键点:(1)圆锥侧面展开图的扇形弧长等于底面周长;(2)圆锥底面半径r、高h、母线l组成直角三角形,满足勾股定理,本题考查这两种关系的应用,属于简单题.2、A【解析】根据给定条件求出函数的解析式,再将问题转化成求两个函数图象公共点个数作答.【详解】因定义域为的单调递增函数满足:,有,则存在唯一正实数使得,且,即,于是得,而函数在上单调递增,且当时,,因此,,方程,于是得方程的解的个数是函数与的图象公共点个数,在同一坐标系内作出函数与的图象如图,观察图象知,函数与的图象有3个公共点,所以方程解的个数为3.故选:A【点睛】思路点睛:图象法判断方程的根的个数,常常将方程变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.3、C【解析】设球的半径为,根据题意知球心到平面的距离,截球所得截面圆的半径为1,由,截面圆半径,球半径构成直角三角形,利用勾股定理,即可求出球半径,进而求出球的表面积.【详解】如图所示,设球的半径为,因为,所以,又因为截球所得截面的面积为,所以,在中,有,即,所以,故球的表面积,故选:C.【点睛】本题主要考查球的基本应用,答题关键点在于明确球心到截面的距离,截面圆半径,球半径三者可构成直角三角形,进而满足勾股定理.4、D【解析】将分式不等式移项、通分,再转化为等价一元二次不等式,解得即可;【详解】解:∵,,即,等价于且,解得或,∴所求不等式的解集为或,故选:D.5、D【解析】可以将三棱锥侧面展开,将计算周长最小值转化成计算两点间距离最小值,解三角形,即可得出答案.【详解】将三棱锥的侧面展开,如图则将求截面周长的最小值,转化成计算的最短距离,结合题意可知=,,所以,故周长最小值为,故选D.【点睛】本道题目考查了解三角形的知识,可以将空间计算周长最小值转化层平面计算两点间的最小值,即可.6、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理7、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误8、D【解析】,,故选D.考点:点线面的位置关系.9、C【解析】根据已知条件逐个分析判断【详解】对于A,因为,所以A错误,对于B,因为,所以集合A不是集合B的子集,所以B错误,对于C,因为,,所以,所以C正确,对于D,因为,,所以,所以D错误,故选:C10、B【解析】周长为则,代入扇形弧长公式解得,代入扇形面积公式即可得解.【详解】由题意知,代入方程解得,所以故选:B【点睛】本题考查扇形的弧长、面积公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】由题意,只需找一个奇函数,0不在定义域中即可.【详解】由题意,为奇函数且,则满足题意故答案为:12、;【解析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.13、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:14、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.15、【解析】利用已知条件可得出关于的不等式组,由此可解得函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案:.16、【解析】根据余弦值及角的范围,应用同角的平方关系求.【详解】由,,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)的最大值为,最小值为.【解析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论;(2)根据在上的单调性,求在上的最值即可.【详解】解:(1)因为,可得,解得,所以,任取,则,因为,所以,可得,即且,所以,即,所以在上是增函数;(2)由(1)知,在上是增函数,同理,任取时,,其中,故,即且,故,即,所以在上是减函数,故在上是减函数,在上是增函数,又,,所以的最大值为,最小值为.【点睛】方法点睛:利用定义证明函数单调性方法:(1)取值:设是该区间内的任意两个值,且;(2)作差变形:即作差,即作差,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差的符号;(4)下结论:判断,根据定义作出结论.即取值——作差——变形——定号——下结论.18、(1)(2)【解析】(1)化简函数,结合三角函数的图象与性质,即可求解;(2)由,可得,结合三角函数的图象与性质,即可求解;【小问1详解】解:由题意,函数,令,解得,所以函数的对称中心为.【小问2详解】解:因为,可得,当时,即时,可得;当时,即时,可得,所以函数的值域为19、(1);(2)大约冷却分钟,理由见解析.【解析】(1)根据求得冷却时间(单位:分)关于冷却水温(单位:℃)的函数关系,结合对数运算求得.(2)根据(1)中的函数关系式列方程,由此求得冷却时间.【小问1详解】依题意,,,,,,.,依题意,则.若选:从98℃下降到90℃所用时间:1分58秒,即分,则若选:从98℃下降到85℃所用时间:3分24秒,即分,若选:从98℃下降到80℃所用时间:4分57秒,即分,所以.【小问2详解】结合(1)可知:,依题意,.所以大约冷却分钟.20、(1)(2)【解析】(1)由三角函数定义求出点坐标,用扇形面积减三角形面积可得弓形面积;(2)由三角函数定义写出点坐标,计算后用二倍角公式和诱导公式计算【详解】(1)由三角函数定义可知,点P的坐标为.所以面积为,扇形OPA的面积为.所以阴影部分的面积为.(2)由三角函数的定义,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工智能风控模型优化-第20篇
- 2025浙江省临床药学实验室治疗药物监测管理专家共识
- (2025)英国多学会指南:接受体外膜氧合患者紧急事件的管理解读课件
- 人工智能在金融风控中的应用-第14篇
- 培训机构课程设置与教学效果评估
- 《烟文化与人类健康》课件-8.1现代控烟的发展历史
- 机器学习在反洗钱中的应用-第30篇
- 初中八年级语文写作专项训练
- 电商平台客户投诉处理流程指引
- 2026届河北省衡水市中学·高三语文第一学期期末经典试题含解析
- 2026国企综合基础知识题库(附答案)
- 债权人合同范本
- 易错点2.2摩擦力(解析版)高考易错点解读和针对训练
- 2025至2030丝苗米市场行业发展趋势分析与未来投资战略咨询研究报告
- 手镯翡翠买卖协议书范本
- NB/T 11438-2023循环流化床气化炉运行导则
- 食品营养学(暨南大学)智慧树知到期末考试答案章节答案2024年暨南大学
- 人类普遍交往与世界历史的形成发展
- Python数据分析与应用-从数据获取到可视化(第2版)课件 第6章 数据可视化
- 《美容皮肤学》考试复习题库(含答案)
- 汽车吊起重吊装专项施工方案
评论
0/150
提交评论