版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江佳木斯市第一中学高一上数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个选项中正确的是()A B.C. D.2.已知命题,则p的否定为()A. B.C. D.3.设,则的值为()A.0 B.1C.2 D.34.函数的图象如图所示,为了得到函数的图象,可以把函数的图象A.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位B.每个点横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位C.先向左平移个单位,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)D.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)5.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.下列命题中是真命题的是()A.“”是“”的充分条件B.“”是“”的必要条件C.“”是“”的充要条件D.“”是“”的充要条件7.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()A. B.C. D.8.函数图象大致是()A. B.C. D.9.已知为锐角,为钝角,,则()A. B.C. D.10.设,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________12.若函数在区间上为增函数,则实数的取值范围为______.13.若函数(,且)在上是减函数,则实数的取值范围是__________.14.已知函数的图象过原点,则___________15.已知,函数,若,则______,此时的最小值是______.16.已知,,则的值为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数,若实数满足,则称是的不动点.现设(1)当时,分别求与的所有不动点;(2)若与均恰有两个不动点,求a的取值范围;(3)若有两个不动点,有四个不动点,证明:不存在函数满足18.已知函数是偶函数.(1)求实数的值;(2)当时,函数存在零点,求实数的取值范围;(3)设函数,若函数与的图像只有一个公共点,求实数的取值范围.19.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有两个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.20.已知函数(1)求的最小正周期及最大值;(2)求在区间上的值域21.已知集合,集合.(1)当时,求;(2)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据集合与集合关系及元素与集合的关系判断即可;【详解】解:对于A:,故A错误;对于B:,故B错误;对于C:,故C错误;对于D:,故D正确;故选:D2、D【解析】全称命题的否定为存在命题,利用相关定义进行判断即可【详解】全称命题的否定为存在命题,命题,则为.故选:D3、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.4、C【解析】根据函数的图象,设可得再根据五点法作图可得故可以把函数的图象先向左平移个单位,得到的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到函数的图象,故选C5、A【解析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.6、B【解析】利用充分条件、必要条件的定义逐一判断即可.【详解】因为是集合A的子集,故“”是“”的必要条件,故选项A为假命题;当时,则,所以“”是“”的必要条件,故选项B为真命题;因为是上的减函数,所以当时,,故选项C为假命题;取,,但,故选项D为假命题.故选:B.7、B【解析】根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.表面积为:故答案为B.8、A【解析】利用函数的奇偶性排除部分选项,再利用当x>0时,函数值的正负确定选项即可.【详解】函数f(x)定义域为,所以函数f(x)是奇函数,排除BC;当x>0时,,排除D故选:A9、C【解析】利用平方关系和两角和的余弦展开式计算可得答案.【详解】因为为锐角,为钝角,,所以,,则.故选:C.10、B【解析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.12、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:13、【解析】根据分段函数的单调性,列出式子,进行求解即可.【详解】由题可知:函数在上是减函数所以,即故答案为:14、0【解析】由题意可知,函数经过坐标原点,只需将原点坐标带入函数解析式,即可完成求解.【详解】因为的图象过原点,所以,即故答案为:0.15、①.②.【解析】直接将代入解析式即可求的值,进而可得的解析式,再分段求最小值即可求解.【详解】因为,所以,所以,当时,对称轴为,开口向上,此时在单调递增,,当时,,此时时,最小值,所以最小值为,故答案为:;.16、3【解析】,故答案为3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)见详解.【解析】【小问1详解】因为,所以即,所以,所以的不动点为;解,,所以,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,所以,所以的不动点为;【小问2详解】由得,由、得,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,因为与均恰有两个不动点,所以①或②且和有同根,由①得,②中两方程相减得,所以,故,综上,a的取值范围是;【小问3详解】(3)设的不动点为,的不动点为,所以,设,则,所以,所以是的不动点,同理,也是的不动点,只能,假设存在,则或,因为过点,所以,否则矛盾,且,否则,所以一定存在,与均不同,所以,所以,所以有另外不动点,矛盾,故不存在函数满足18、(1)(2)(3)【解析】(1)函数是偶函数,所以得出值检验即可;(2),因为时,存在零点,即关于的方程有解,求出的值域即可;(3)因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以,换元,研究二次函数图象及性质即可得出实数的取值范围.【小问1详解】解:因为是上偶函数,所以,即解得,此时,则是偶函数,满足题意,所以.【小问2详解】解:因为,所以因为时,存在零点,即关于的方程有解,令,则因为,所以,所以,所以,实数的取值范围是.【小问3详解】因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以令,得…(*),记,①当时,函数图像开口向上,又因为图像恒过点,方程(*)有一正一负两实根,所以符合题意;②当时,因为,所以只需,解得,方程(*)有两个相等的正实根,所以满足题意,综上,的取值范围是.19、(1);(2);(3).【解析】(1)当a=1时,利用对数函数的单调性,直接解不等式f(x)1即可;(2)化简关于x的方程f(x)+2x=0,通过分离变量推出a的表达式,通过解集中恰有两个元素,利用二次函数的性质,即可求a的取值范围;(3)在R上单调递减利用复合函数的单调性,求解函数的最值,∴令,化简不等式,转化为求解不等式的最大值,然后求得a的范围【详解】(1)当时,,∴,解得,∴原不等式的解集为.(2)方程,即为,∴,∴,令,则,由题意得方程在上只有两解,令,,结合图象可得,当时,直线和函数的图象只有两个公共点,即方程只有两个解∴实数的范围.(3)∵函数在上单调递减,∴函数在定义域内单调递减,∴函数在区间上最大值为,最小值为,∴,由题意得,∴恒成立,令,∴对,恒成立,∵在上单调递增,∴∴,解得,又,∴∴实数的取值范围是.【点睛】本题考查函数的综合应用,复合函数的单调性以及指对复合型函数的最值的求法,利用换元法将指对复合型函数转化为二次函数求最值是关键,考查转化思想以及分类讨论思想的应用,属于难题20、(1),;(2).【解析】(1)利用周期公式及正弦函数的性质即得;(2)由,求出的范围,再利用正弦函数的性质即可求解.【小问1详解】∵函数,∴最小正周期,∵,,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成果转化积极性提升策略研究
- 慢性术后疼痛的预防策略
- 中山航道施工资质协议书
- 能源消费结构优化调整方案
- 部队博士考试题库及答案
- 感染性心内膜炎脾脓肿合并肾功能不全患者的治疗策略
- 感染性心内膜炎合并脾脓肿患者术后抗凝治疗的调整策略
- 患者隐私泄露应急处置与修复策略
- 患者权益导向的绩效改革策略
- 贵州省县中联盟2025-2026学年高一上学期12月自主命题考试语文试卷(含答案)
- 草原补偿协议书
- 江苏省2025年普通高中学业水平合格性考试试卷英语试卷(含答案详解)
- 2025年全国新闻记者职业资格考试(新闻采编实务)题库及完整答案
- 人教鄂教版(2017秋)小学科学四年级上册期末综合质量检测卷(含答案)
- 腭裂喂养护理:新生儿与婴儿喂养技巧
- GB 3836.20-2010爆炸性环境第20部分:设备保护级别(EPL)为Ga级的设备
- 兽药营销课程资源库兽药产品策略课件
- 医院医疗欠费管理办法(医院财务管理制度)
- 宁波大学《通信原理》期末考试试题
- GB∕T 5824-2021 建筑门窗洞口尺寸系列
- 中学生两会模拟提案
评论
0/150
提交评论