江西省高安二中2026届高一上数学期末联考试题含解析_第1页
江西省高安二中2026届高一上数学期末联考试题含解析_第2页
江西省高安二中2026届高一上数学期末联考试题含解析_第3页
江西省高安二中2026届高一上数学期末联考试题含解析_第4页
江西省高安二中2026届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省高安二中2026届高一上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各式中成立的是A. B.C. D.2.已知函数是定义在R上的周期为2的偶函数,当时,,则A. B.C. D.3.已知角的终边经过点,则A. B.C. D.4.已知定义在上的偶函数,在上为减函数,且,则不等式的解集是()A. B.C. D.5.函数的零点个数是A.0 B.1C.2 D.36.已知命题:“,方程有解”是真命题,则实数a的取值范围是()A. B.C. D.7.函数()A. B.C. D.8.设,,,则、、的大小关系是()A. B.C. D.9.不等式的解集为,则实数的取值范围是()A. B.C. D.10.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球 B.恰好有一个白球与都是红球C.至少有一个白球与都是白球 D.至少有一个白球与至少一个红球二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______12.集合,则____________13.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______14.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)15.记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是__________16.写出一个同时具有下列性质①②③的函数_________①在R上单调递增;②;③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知正方体,(1)证明:平面;(2)求异面直线与所成的角18.已知二次函数()若函数在上单调递减,求实数的取值范围()是否存在常数,当时,在值域为区间且?19.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.20.在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B,记AB的中点为E(Ⅰ)若AB的长等于,求直线l的方程;(Ⅱ)是否存在常数k,使得OE∥PQ?如果存在,求k值;如果不存在,请说明理由21.设n是不小于3的正整数,集合,对于集合Sn中任意两个元素.定义.若,则称A,B互为相反元素,记作或(1)若n=3,A=(0,1,0),B=(1,1,0),试写出,,以及A·B的值;(2)若,证明:;(3)设k是小于n的正奇数,至少含有两个元素的集合,且对于集合M中任意两个不同的元素,都有,试求集合M中元素个数的所有可能的取值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.2、A【解析】依题意有.3、D【解析】由任意角的三角函数定义列式求解即可.【详解】由角终边经过点,可得.故选D.【点睛】本题主要考查了任意角三角函数的定义,属于基础题.4、D【解析】根据函数的性质,画出函数的图象,数形结合求出解集【详解】由题意,画出的图象如图,等价于,或,由图可知,不等式的解集为故选:D5、C【解析】将原问题转化为函数交点个数的问题即可确定函数的零点个数.【详解】函数的零点个数即函数与函数交点的个数,绘制函数图象如图所示,观察可得交点个数为2,则函数的零点个数是2.本题选择C选项.【点睛】本题主要考查函数零点的定义,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.6、B【解析】由根的判别式列出不等关系,求出实数a的取值范围.【详解】“,方程有解”是真命题,故,解得:,故选:B7、A【解析】由于函数为偶函数又过(0,0),排除B,C,D,所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.8、B【解析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系.【详解】,即,,,因此,.故选:B.9、C【解析】将不等式的解集为,转化为不等式的解集为R,分和两种情况讨论求解.【详解】因为不等式的解集为,所以不等式的解集为R,当,即时,成立;当,即时,,解得,综上:实数的取值范围是故选:C【点睛】本题主要考查一元二次不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于基础题.10、B【解析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可.【详解】解:对于A,事件:“至少有一个白球”与事件:“都是红球”不能同时发生,但是对立,故A错误;对于B,事件:“恰好有一个白球”与事件:“都是红球”不能同时发生,但从口袋内任取两个球时还有可能是两个都是白球,所以两个事件互斥而不对立,故B正确;对于C,事件:“至少有一个白球”与事件:“都是白球”可以同时发生,所以这两个事件不是互斥的,故C错误;对于D,事件:“至少有一个白球”与事件:“至少一个红球”可以同时发生,即“一个白球,一个红球”,所以这两个事件不是互斥的,故D错误.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为12、【解析】分别解出集合,,再根据并集的定义计算可得.【详解】∵∴,∵,∴,则,故答案为:【点睛】本题考查指数不等式、对数不等式的解法,并集的运算,属于基础题.13、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角14、2021【解析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202115、4、5、6【解析】根据偶函数,是正整数,推断出的取值范围,相邻的两个的距离是,依照题意列不等式组,求出的值【详解】由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1∴,解得,又,∴.答案:【点睛】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解的意义,强调抽象思维与灵活应变的能力16、(答案不唯一,形如均可)【解析】由指数函数的性质以及运算得出.【详解】对函数,因在R上单调递增,所以在R上单调递增;,.故答案为:(答案不唯一,形如均可)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)证明,再根据线面平行的判定定理即可证明结论;(2)即为异面直线与所成的角,求出即可【详解】(1)证:在正方体中,,且,∴四边形为平行四边形,∴,又∵平面,平面;∴平面;(2)解:∵,∴即为异面直线与所成的角,设正方体的边长为,则易得,∴为等边三角形,∴,故异面直线与所成的角为【点睛】本题主要考查线面平行的判定与异面直线所成的角,属于基础题18、(1).(2)存在常数,,满足条件【解析】(1)结合二次函数的对称轴得到关于实数m的不等式,求解不等式可得实数的取值范围为(2)在区间上是减函数,在区间上是增函数.据此分类讨论:①当时,②当时,③当,综上可知,存在常数,,满足条件试题解析:()∵二次函数的对称轴为,又∵在上单调递减,∴,,即实数的取值范围为()在区间上是减函数,在区间上是增函数①当时,在区间上,最大,最小,∴,即,解得②当时,在区间上,最大,最小,∴,解得③当,在区间上,最大,最小,∴,即,解得或,∴综上可知,存在常数,,满足条件点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析19、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.20、(Ⅰ)y=-+2或y=-x+2;(Ⅱ)不存在实数满足题意【解析】(Ⅰ)待定系数法,设出直线,再根据已知条件列式,解出即可;(Ⅱ)假设存在常数,将转化斜率相等,联立直线与圆,根据韦达定理,由直线与圆相交可求得范围.由斜率相等可求得的值,从而可判断结论【详解】(Ⅰ)圆Q的方程可写成(x-6)2+y2=4,所以圆心为Q(6,0)设过P(0,2)且斜率为k的直线方程为y=kx+2∵|AB|=,∴圆心Q到直线l的距离d==,∴=,即22k2+15k+2=0,解得k=-或k=-所以,满足题意的直线l方程为y=-+2或y=-x+2(Ⅱ)将直线l的方程y=x+2代入圆方程得x2+(kx+2)2-12x+32=0整理得(1+k2)x2+4(k-3)x+36=0.①直线与圆交于两个不同的点A,B等价于△=[4(k-3)2]-4×36(1+k2)=42(-8k2-6k)>0,解得-<k<0,即k的取值范围为(-,0)设A(x1,y1),B(x2,y2),则AB的中点E(x0,y0)满足x0==-,y0=kx0+2=∵kPQ==-,kOE==-,要使OE∥PQ,必须使kOE=kPQ=-,解得k=-,但是k∈(-,0),故没有符合题意的常数k【点睛】本题考查了圆的标准方程及弦长计算,还考查了直线与圆相交知识,直线平行知识,中点坐标公式,韦达定理的应用,考查了转化思想,属中档题21、(1)(2)证明见解析(3)集合M中元素的个数只可能是2【解析】(1)根据定义直接求解即可;(2)设,进而结合题意得,,再计算即可;(3)假设为集合M中的三个不相同的元素,进而结合题意,推出矛盾,得出假设不成立,即集合M中至多有两个元素,且时符合题意,故集合M中元素的个数只可能是2【小问1详解】解:因为若,则称A,B互为相反元素,记作或,所以,所以.【小问2详解】解:设,由,可得所以,当且仅当,即时上式“=”成立由题意可知即所以【小问3详解】解:解法1:假设为集合M中的三个不相同的元素则即又由题意可知或1,i=1,2,,n恰有k个1,与n-k个0设其中k个等于1项依次为n-k个等于0的项依次为由题意可知所以,同理所以即因为由(2)可知因为所以,设,由题意可知.所以,得与为奇

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论