版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省运城市永济中学数学高一上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过点(4,2),则()A.2 B.4C.2或-2 D.4或-42.直线l1的倾斜角,直线l1⊥l2,则直线l2的斜率为A.- B.C.- D.3.已知棱长为3的正方体ABCD﹣A1B1C1D1内部有一圆柱,此圆柱恰好以直线AC1为轴,则该圆柱侧面积的最大值为()A.92πC.23π4.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在5.下列关于集合的关系式正确的是A. B.C. D.6.2018年,晓文同学参加工作月工资为7000元,各种用途占比统计如下面的条形图.后来晓文同学加强了体育锻炼,目前月工资的各种用途占比统计如下面的折线图.已知目前的月就医费比刚参加工作时少200元,则目前晓文同学的月工资为A.7000 B.7500C.8500 D.95007.已知函数在区间上单调递减,则实数的取值范围为()A. B.C. D.8.已知函数f(x)=,若f(f(-1))=6,则实数a的值为()A.1 B.C.2 D.49.()A. B.3C.2 D.10.已知集合,,全集,则()A. B.C. D.I二、填空题:本大题共6小题,每小题5分,共30分。11.过点,的直线的倾斜角为___________.12.命题“”的否定是______.13.若直线与垂直,则________14.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.15.已知,若方程恰有个不同的实数解、、、,且,则______16.幂函数为偶函数且在区间上单调递减,则________,________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.若,求实数a的取值范围.18.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间19.已知函数的定义域为,若存在实数,使得对于任意都存在满足,则称函数为“自均值函数”,其中称为的“自均值数”.(1)判断函数是否为“自均值函数”,并说明理由:(2)若函数,为“自均值函数”,求的取值范围;(3)若函数,有且仅有1个“自均值数”,求实数的值.20.已知函数.(1)求的最小正周期;(2)求函数的单调增区间;(3)求函数在区间上值域21.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设幂函数代入已知点可得选项.【详解】设幂函数又函数过点(4,2),,故选:B.2、C【解析】由题意可得L2的倾斜角等于30°+90°=120°,从而得到L2的斜率为tan120°,运算求得结果【详解】如图:直线L1的倾斜角α1=30°,直线L1⊥L2,则L2的倾斜角等于30°+90°=120°,∴L2的斜率为tan120°=﹣tan60°,故选C【点睛】本题主要考查直线的倾斜角和斜率的关系,体现了数形结合的数学思想,属于基础题3、A【解析】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,即可得出结论【详解】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在线段AB1,AC,AD1上,设线段AB1上的切点为E,AC1∩面A1BD=O2,圆柱上底面的圆心为O1,半径即为O1E=r,则AO2=13AC1=1332+32+3故选A【点睛】本题考查求圆柱侧面积的最大值,考查正方体与圆柱的内切问题,考查学生空间想象与分析解决问题的能力,属于中档题4、C【解析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.5、A【解析】因为{0}是含有一个元素的集合,所以{0}≠,故B不正确;元素与集合间不能划等号,故C不正确;显然相等,故D不正确.故选:A6、C【解析】根据两次就医费关系列方程,解得结果.【详解】参加工作就医费为,设目前晓文同学的月工资为,则目前的就医费为,因此选C.【点睛】本题考查条形图以及折线图,考查基本分析判断与求解能力,属基础题.7、A【解析】先由题意,求出函数的单调递减区间,再由题中条件,列出不等式组求解,即可得出结果.【详解】由题意,令,则,即函数的单调递减区间为,因为函数在区间上单调递减,所以,解得,所以,.故选:A.【点睛】关键点点睛:本题的关键是用不等式法求函数的单调递减区间时,应该令,且该函数的周期应为,则.8、A【解析】利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可【详解】函数f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故选A【点睛】本题考查分段函数应用,函数值的求法,考查计算能力9、D【解析】利用换底公式计算可得答案【详解】故选:D10、B【解析】根据并集、补集的概念,计算即可得答案.【详解】由题意得,所以故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】设直线的倾斜角为,求出直线的斜率即得解.【详解】解:设直线的倾斜角为,由题得直线的斜率为,因为,所以.故答案为:12、【解析】根据全称命题的否定是特称命题,写出结论.【详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”.【点睛】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题.13、【解析】根据两直线垂直的等价条件列方程,解方程即可求解.【详解】因为直线与垂直,所以,解得:,故答案为:.14、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.15、【解析】作出函数的图象以及直线的图象,利用对数的运算可求得的值,利用正弦型函数的对称性可求得的值,即可得解.【详解】作出函数的图象以及直线的图象如下图所示:由图可知,由可得,即,所以,,可得,当时,,由,可得,由图可知,点、关于直线对称,则,因此,.故答案为:.16、(1).或3(2).4【解析】根据题意可得:【详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】求函数定义域得,解不等式得,进而得,再结合题意,分和两种情况求解即可.【详解】解:由,解得,所以,因为,解得,所以所以因为,所以,当时,,解得时,可得,解得:综上可得:实数a的取值范围是18、(1)对称轴为,;,(2)和【解析】(1)先把化简成一个角的三角函数形式,再整体代换法去求的对称轴和对称中心;(2)整体代换法去求在上的单调递增区间即可.【小问1详解】由题可知,由对称轴与其相邻的一个对称中心的距离为,得,解得,所以令,即,所以的对称轴为,;令,即,所以的对称中心为,【小问2详解】令∵,∴,由图可知,只需满足或,即或,∴在上的单调递增区间是和19、(1)不是,理由见解析;(2);(3)或.【解析】(1)假定函数是“自均值函数”,由函数的值域与函数的值域关系判断作答.(2)根据给定定义可得函数在上的值域包含函数在上的值域,由此推理计算作答.(3)根据给定定义可得函数在上的值域包含函数在上的值域,再借助a值的唯一性即可推理计算作答.【小问1详解】假定函数是“自均值函数”,显然定义域为R,则存在,对于,存在,有,即,依题意,函数在R上的值域应包含函数在R上的值域,而当时,值域是,当时,的值域是R,显然不包含R,所以函数不“自均值函数”.【小问2详解】依题意,存在,对于,存在,有,即,当时,的值域是,因此在的值域包含,当时,而,则,若,则,,此时值域的区间长度不超过,而区间长度为1,不符合题意,于是得,,要在的值域包含,则在的最小值小于等于0,又时,递减,且,从而有,解得,此时,取,的值域是包含于在的值域,所以的取值范围是.【小问3详解】依题意,存在,对于,存在,有,即,当时,的值域是,因此在的值域包含,并且有唯一的a值,当时,在单调递增,在的值域是,由得,解得,此时a的值不唯一,不符合要求,当时,函数的对称轴为,当,即时,在单调递增,在的值域是,由得,解得,要a的值唯一,当且仅当,即,则,当,即时,,,,,由且得:,此时a的值不唯一,不符合要求,由且得,,要a的值唯一,当且仅当,解得,此时;综上得:或,所以函数,有且仅有1个“自均值数”,实数的值是或.【点睛】结论点睛:若,,有,则的值域是值域的子集.20、(1);(2);(3).【解析】(1)根据二倍角公式和诱导公式,结合辅助角公式可求得解析式,从而利用周期公式可求得周期;(2)利用整体代换即可求单调增区间;(3)由得,从而可得的取值范围.【详解】(1),所以最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无人驾驶配送服务协议
- 2026年城市配送排班协议
- 2026年北京市天文知识竞赛(中学组)测试题及答案
- 个人自查自纠整改报告范文5篇
- 2026年存款保险知识竞赛题库及答案汇编
- 聘用市场策划合同协议2025
- 仓储服务租赁使用协议
- 2026年急救培训急救反应能力训练卷
- 美食节策划方案
- 2026年户外活动安全指导卷
- 浙江水运交通工程安全管理台帐
- 《柔性棚洞防护结构技术规程》
- 化纤织物染整精加工质量控制与检测技术
- 制定技术规范的目的与意义
- 2023-2024学年北京西城区高三(上)期末物理试卷(含答案)
- Q2-起重机司机实际操作技能考核作业指导书
- 黄金冶炼技术综述
- 农村低保制度建设情况调查报告
- 山西省灵丘县恒鑫源矿业有限公司东岐铁矿资源开发利用和矿山环境保护与土地 复垦方案
- 大国三农II-农业科技版知到章节答案智慧树2023年中国农业大学
- GA 1204-2014移动式消防储水装置
评论
0/150
提交评论