江苏省苏州市重点名校2026届高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
江苏省苏州市重点名校2026届高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
江苏省苏州市重点名校2026届高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
江苏省苏州市重点名校2026届高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
江苏省苏州市重点名校2026届高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市重点名校2026届高二数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某四面体的三视图如图所示,该四面体的表面积为()A. B.C. D.2.已知等差数列的前项和为,,,则()A. B.C. D.3.已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1 B.2C.4 D.64.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.5.已知空间向量,,,则()A.4 B.-4C.0 D.26.已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A. B.C. D.7.若直线的斜率,则直线的倾斜角的取值范围是()A. B.C. D.8.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.9.设命题,则为A. B.C. D.10.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.311.已知点是双曲线的左焦点,是双曲线右支上一动点,过点作轴垂线并延长交双曲线左支于点,当点向上移动时,的值()A.增大 B.减小C.不变 D.无法确定12.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数二、填空题:本题共4小题,每小题5分,共20分。13.如图,在棱长为2的正方体中,E为BC的中点,点P在线段上,分别记四棱锥,的体积为,,则的最小值为______14.若“x2-2x-8>0”是“x<m”的必要不充分条件,则m最大值为________15.已知原命题为“若,则”,则它的逆否命题是__________(填写”真命题”或”假命题”)16.已知函数,若在上是增函数,则实数的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值18.(12分)已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.19.(12分)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm),数据统计如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述数据的众数,并估计这批鱼该项数据的80%分位数;(2)有A,B两个水池,两水池之间有8个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼①将其中汞的含量最低的2条鱼分别放入A水池和B水池中,若这2条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;②将其中汞的含量最低的2条鱼都先放入A水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A水池进入B水池且不再游回A水池,求这两条鱼由不同小孔进入B水池的概率20.(12分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值21.(12分)已知函数.(1)求曲线在点处的切线的方程.(2)若直线为曲线切线,且经过坐标原点,求直线的方程及切点坐标.22.(10分)设圆的圆心为﹐直线l过点且与x轴不重合,直线l交圆于A,B两点.过作的平行线交于点P.(1)求点P的轨迹方程;(2)设点P的轨迹为曲线E,直线l交E于M,N两点,C在线段上运动,原点O关于C的对称点为Q,求四边形面积的取值范围;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为,故选:A.2、C【解析】利用已知条件求得,由此求得.【详解】依题意,解得,所以.故选:C【点睛】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.3、C【解析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.4、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题5、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.6、A【解析】设双曲线的一条渐近线方程为,为的中点,可得,由,可知为的三等分点,用两种方式表示,可得关于的方程组,结合即可得到双曲线的离心率.【详解】设双曲线的一条渐近线方程为,为的中点,可得,由到渐近线的距离为,所以,又,所以,因为,所以,整理可得:,即,所以,可得,所以,所以双曲线的离心率为,故选:A.7、B【解析】根据斜率的取值范围,结合来求得倾斜角的取值范围.【详解】设倾斜角为,因为,且,所以.故选:B8、A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A9、C【解析】特称命题的否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.10、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.11、C【解析】令双曲线右焦点为,由对称性可知,,结合双曲线的定义即可得出结果.【详解】令双曲线右焦点为,由对称性可知,,则,为常数,故选:C.12、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,用参数表示目标函数,利用均值不等式求最值即可.【详解】取线段AD中点为F,连接EF、D1F,过P点引于M,于N,则平面,平面,则,∴,设,则,,即,,∴,当且仅当时,等号成立,故答案为:14、【解析】解不等式,得到或,,根据必要不充分条件,得到是A的真子集,从而求出,得到m的最大值.【详解】,解得:或,所以记或,;若“x2-2x-8>0”是“x<m”的必要不充分条件,则是A的真子集故,所以m最大值为故答案为:-215、真命题【解析】先判断原命题的真假,再由逆否命题与原命题是等价命题判断.【详解】因为命题“若,则”是真命题,且逆否命题与原命题是等价命题,所以它的逆否命题是真命题,故答案为:真命题16、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】(1)根据给定条件求出椭圆半焦距c,长短半轴长a,b即可得解.(2)设出直线的方程,再与椭圆C的方程联立,求出弦AB长及点P到直线的距离,然后求出面积的表达式并求其最大值即得.【小问1详解】设椭圆的标准方程为,依题意,半焦距,,即,所以椭圆的标准方程为.【小问2详解】依题意,设直线,,由消去y并整理得:,由,解得,则有,,于是得,而点到直线的距离为,因此,的面积,当且仅当,即时取“=”,所以面积最大值为1.【点睛】结论点睛:直线l:y=kx+b上两点间的距离;直线l:x=my+t上两点间的距离.18、(1)证明见解析,(2)【解析】(1)将直线方程化为,解方程得出定点;(2)求出圆心到直线的距离,再由几何法得出弦长.【小问1详解】证明:因为直线,所以.令,解得,所以不论取何值,直线必过定点【小问2详解】当时,直线为,圆心圆心到直线的距离,则19、(1)众数为0.82,8%分位数约为1.34(2)①;②【解析】(1)根据题中表格数据即可求得答案;(2)①两条鱼有可能均在A水池也可能都在B水池,故可根据互斥事件的概率结合相互独立事件的概率计算求得答案;②先求出这两条鱼由同一个小孔进入B水池的概率,然后根据对立事件的概率计算方法,求得答案.【小问1详解】由题意知,数据的众数为0.82,估计这批鱼该项数据的80%分位数约为【小问2详解】①记“两鱼最终均在A水池”为事件A,则,记“两鱼最终均在B水池”为事件B,则,∵事件A与事件B互斥,∴两条鱼最终在同一水池的概率为②记“两鱼同时从第一个小孔通过”为事件,“两鱼同时从第二个小孔通过”为事件,…依次类推,而两鱼的游动独立,∴,记“两条鱼由不同小孔进入B水池”为事件C,则C与对立,又由事件,事件,…,事件互斥,∴,即20、(1)(2)【解析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.【小问1详解】由题意可得,圆心为(2,0),半径为2.则圆的方程为;【小问2详解】由(1)可知:圆C半径为,设圆心(2,0)到l的距离为d,则,由垂径定理得:21、(1);(2)直线的方程为,切点坐标为.【解析】(1)先求导数,再根据导数几何意义得切线斜率,最后根据点斜式得结果,(2)设切点,根据导数几何意义得切线斜率,根据点斜式得切线方程,再根据切线过坐标原点解得结果.【详解】(1).所以在点处的切线的斜率,∴切线的方程为;(2)设切点为,则直线的斜率为,所以直线的方程为:,所以又直线过点,∴,整

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论