版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西丰城二中2026届高一上数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,则可能是()A. B.C. D.2.对于直线的截距,下列说法正确的是A.在y轴上的截距是6 B.在x轴上的截距是6C.在x轴上的截距是3 D.在y轴上的截距是-33.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.4.已知实数集为,集合,,则A. B.C. D.5.已知,则的值为()A. B.C. D.6.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个7.下列函数中,既是偶函数又在区间上单调递增的函数是A. B.C. D.8.命题“∃x>0,x2=x﹣1”的否定是()A.∃x>0,x2≠x﹣1 B.∀x≤0,x2=x﹣1C.∃x≤0,x2=x﹣1 D.∀x>0,x2≠x﹣19.已知定义域为的奇函数满足,若方程有唯一的实数解,则()A.2 B.4C.8 D.1610.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则=_________.12.某高中校为了减轻学生过重的课业负担,提高育人质量,在全校所有的1000名高中学生中随机抽取了100名学生,了解他们完成作业所需要的时间(单位:h),将数据按照0.5,1,1,1.5,1.5,2,2,2.5,2.5,3,3,3.5,分成6组,并将所得的数据绘制成频率分布直方图(如图所示).由图中数据可知a=___________;估计全校高中学生中完成作业时间不少于3h的人数为13.下列一组数据的分位数是___________.14.正方体中,分别是,的中点,则直线与所成角的余弦值是_______.15.已知扇形的弧长为,且半径为,则扇形的面积是__________.16.已知函数,则函数的零点个数为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.18.已知二次函数的图象关于直线对称,且关于的方程有两个相等的实数根.(1)的值域;(2)若函数且在上有最小值,最大值,求的值.19.已知圆C经过点,两点,且圆心在直线上(1)求圆C的方程;(2)已知、是过点且互相垂直的两条直线,且与C交于A,B两点,与C交于P、Q两点,求四边形APBQ面积的最大值20.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.21.已知.(1)化简,并求的值;(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,,得到正确答案.【详解】由图象可知:,且,所以,不妨设:,将代入得:,即,,解得:,,当时,,故A正确,其他选项均不合要求.故选:A2、A【解析】令,得y轴上的截距,令得x轴上的截距3、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D4、C【解析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.5、C【解析】利用余弦的二倍角公式即可求解.【详解】.故选:C.6、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键7、D【解析】选项A为偶函数,但在区间(0,+∞)上单调递减;选项B,y=x3为奇函数;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性;选项D满足题意【详解】选项A,y=ln为偶函数,但在区间(0,+∞)上单调递减,故错误;选项B,y=x3为奇函数,故错误;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性,故错误;选项D,y=2|x|为偶函数,当x>0时,解析式可化为y=2x,显然满足在区间(0,+∞)上单调递增,故正确故选D【点睛】本题考查函数的奇偶性和单调性,属于基础题8、D【解析】根据特称命题的否定是全称命题的知识选出正确结论.【详解】因为特称命题的否定是全称命题,注意到要否定结论,所以:命题“∃x>0,x2=x﹣1”的否定是:∀x>0,x2≠x﹣1故选:D【点睛】本小题主要考查全称命题与特称命题,考查特称命题的否定,属于基础题.9、B【解析】由条件可得,为周期函数,且一个周期为6,设,则得到偶函数,由有唯一的实数解,得有唯一的零点,则,从而得到答案.【详解】由得,即,从而,所以为周期函数,且一个周期为6,所以.设,将的图象向右平移1个单位长度,可得到函数的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,即,即,解得,所以故选:.【点睛】关键点睛:本题考查函数的奇偶性和周期性的应用,解答本题的关键是由条件得到,得到为周期函数,设的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,属于中档题.10、D【解析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析和的关系可知,然后用余弦的二倍角公式求解即可.【详解】∵,∴.故答案为:.12、①.0.1②.50【解析】利用频率之和为1可求a,由图求出完成作业时间不少于3h的频率,由频数=总数×【详解】由0.5×2a+0.3+0.4+0.5+0.6=1可求a=0.1;由图可知,全校高中学生中完成作业时间不少于3h的频率为0.5×0.1=0.05故答案为:0.1;5013、26【解析】根据百分位数的定义即可得到结果.【详解】解:,该组数据的第分位数为从小到大排序后第2与3个数据的平均数,第2与3个数据分别是25、27,故该组数据的第分位数为,故答案为:2614、【解析】结合异面直线所成角的找法,找出角,构造三角形,计算余弦值,即可【详解】连接,而,所以直线与所成角即为,设正方体边长为1,则,所以余弦值为【点睛】考查了异面直线所成角的计算方法,关键得出直线与所成角即为,难度中等15、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.16、3【解析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)推导出的坐标,由此能求出;(2)设,则,且,解得,,从而,,由此能求出【详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点在的反向延长线上,所以,;(2)当时,设,则,且,解得,,或,,则,或,,.或故18、(1)(2)或【解析】(1)由题意可得且,从而可求出的值,则得,然后求出的值域,进而可求出的值域,(2)函数,设,则,然后分和两种情况求的最值,列方程可求出的值【小问1详解】根据题意,二次函数的图象关于直线对称,则有,即,①又由方程即有两个相等的实数根,则有,②联立①②可得:,,则,则有,则,即函数的值域为;【小问2详解】根据题意,函数,设,则,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,综合可得:或19、(1)(2)7【解析】(1)根据题意,求出MN的中垂线的方程为,分析可得圆心为直线和的交点,联立直线的方程可得圆心的坐标,进而求出圆的半径,由圆的标准方程可得答案;(2)根据题意,分2种情况讨论:,当直线,,其中一条直线斜率为0时,另一条斜率不存在,分析可得四边形APBQ的面积;,当直线,斜率均存在时,设直线的斜率为k,则方程的方程为,用k表示四边形APBQ的面积,由二次函数分析其最值,综合即可得答案【小问1详解】根据题意,点,,则线段MN的中垂线方程为,圆心为直线和的交点,则有,解得,所以圆C的圆心坐标为;半径,所以圆C的方程为.【小问2详解】根据题意,已知、是互相垂直的两条直线,分2种情况讨论:,当直线,,其中一条直线斜率为0时.另一条斜率不存在不妨令的斜率为0,此时,四边形APBQ的面积,当直线,斜率均存在时,设直线的斜率为则其方程为,圆心到直线的距离为,于是,又的方程为同理,所以四边形APBQ的面积,当且仅当即时,等号成立因为综上所述,四边形APBQ面积的最大值为720、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60601-2-64:2025 EN Medical electrical equipment - Part 2-64: Particular requirements for the basic safety and essential performance of light ion beam medical electrical
- 2025年中职幼儿保育(幼儿语言训练)试题及答案
- 2025年中职美术(色彩静物绘画)试题及答案
- 工程机械安全培训课件
- 工程抢修培训课件
- 工程大商务培训课件
- 【初中 生物】吸收作用课件-2025-2026学年北师大版生物七年级上册
- 房颤消融术后冠心病患者策略
- 成果转化:暴露评价产业化
- 成本标杆的科室应用策略-1
- 2026年1月上海市春季高考数学试题卷(含答案)
- 2025年中职机电一体化技术(电工电子技术)试题及答案
- 2026年植物保护(植物检疫)考题及答案
- 11837《行政法与行政诉讼法》国家开放大学期末题库
- 高纯水制取工创新应用能力考核试卷含答案
- 《认识家乡的地理特征》课件
- 前列腺癌穿刺活检的优化策略与质量控制
- 《化工企业可燃液体常压储罐区安全管理规范》解读课件
- 隐私计算建设方案
- 北京第二外国语学院《植物发育生物学》2024-2025学年第一学期期末试卷
- 会计招聘笔试题及答案
评论
0/150
提交评论