2026届四川省成都市双流区高一上数学期末质量检测模拟试题含解析_第1页
2026届四川省成都市双流区高一上数学期末质量检测模拟试题含解析_第2页
2026届四川省成都市双流区高一上数学期末质量检测模拟试题含解析_第3页
2026届四川省成都市双流区高一上数学期末质量检测模拟试题含解析_第4页
2026届四川省成都市双流区高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省成都市双流区高一上数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知,则角()A. B.C. D.或2.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.3.若函数是偶函数,则的单调递增区间为()A. B.C. D.4.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)5.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.6.若,,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限7.函数的单调递减区间是A. B.C. D.8.函数的零点所在的大致区间是()A. B.C. D.9.已知函数,下列说法错误的是()A.函数在上单调递减B.函数是最小正周期为的周期函数C.若,则方程在区间内,最多有4个不同的根D.函数在区间内,共有6个零点10.设集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},则AB中所有元素之积A.-8B.-16C.8D.16二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若,则的取值范围是________.12.函数的单调递减区间为__13.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.14.不等式的解集是___________.15.已知直线过点.若直线在两坐标轴上的截距相等,求直线的方程______.16.已知函数,若时,恒成立,则实数k的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称为上的-增长函数.(1)已知函数,函数,判断和是否为区间上的增长函数,并说明理由;(2)已知函数,且是区间上的-增长函数,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且为上的增长函数,求实数的取值范围.18.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知(1)利用上述结论,证明:的图象关于成中心对称图形;(2)判断的单调性(无需证明),并解关于x的不等式19.已知函数f(x)=-,若x∈R,f(x)满足f(-x)=-f(x)(1)求实数a的值;(2)判断函数f(x)(x∈R)的单调性,并说明理由;(3)若对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范围20.已知,求值;已知,求的值21.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用正弦定理求出角的正弦值,再求出角的度数.【详解】因为,所以,解得:,,因为,所以.故选:C.2、B【解析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B3、B【解析】利用函数是偶函数,可得,解出.再利用二次函数的单调性即可得出单调区间【详解】解:函数是偶函数,,,化为,对于任意实数恒成立,,解得;,利用二次函数的单调性,可得其单调递增区间为故选:B【点睛】本题考查函数的奇偶性和对称性的应用,熟练掌握函数的奇偶性和二次函数的单调性是解题的关键.4、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查5、A【解析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.6、D【解析】本题考查三角函数的性质由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为7、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质8、C【解析】由题意,函数在上连续且单调递增,计算,,根据零点存在性定理判断即可【详解】解:函数在上连续且单调递增,且,,所以所以的零点所在的大致区间是故选:9、B【解析】A.由时,判断;B.易知是偶函数,作出其图象判断;C.在同一坐标系中作出的图象判断;D.根据函数是偶函数,利用其图象,判断的零点个数即可.【详解】A.当时,,而,上递减,故正确;B.因为,所以是偶函数,当时,,作出其图象如图所示:由图象知;函数不是周期函数,故错误;C.在同一坐标系中作出的图象,如图所示:由图象知:当,方程在区间内,最多有4个不同的根,故正确;D.因为函数是偶函数,只求的零点个数即可,如图所示:由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确;故选:B10、C【解析】∵集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},∴AB={2,-4,-1},故AB中所有元素之积为:2×(-4)×(-1)=8故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】当时,由,求得x0的范围;当x0<2时,由,求得x0的取值范围,再把这两个x0的取值范围取并集,即为所求.【详解】当时,由,求得x0>3;当x0<2时,由,解得:x0<-1.综上所述:x0的取值范围是.故答案为:12、【解析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:13、.【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。14、或【解析】把分式不等式转化为,从而可解不等式.【详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.15、或【解析】根据已知条件,分直线过原点,直线不过原点两种情况讨论,即可求解【详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即,当直线不过原点时,设直线的方程为,把点代入方程可得,故直线的方程是,综上所述,所求直线的方程为或故答案为:或.16、【解析】当时,,当时,,又,如图所示:当时,在处取得最大值,且,令,则数列是以1为首项,以为公比的等比数列,∴,∴,若时,恒成立,只需,当上,均有恒成立,结合图形知:,∴,∴,令,,当时,,∴,∴,当时,,,∴,∴最大,∴,∴.考点:1.函数图像;2.恒成立问题;3.数列的最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是,不是,理由见解析;(2);(3).【解析】(1)利用给定定义推理判断或者反例判断而得;(2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f(x)的解析式,再分段讨论求得,最后证明即为所求.【详解】(1)g(x)定义域R,,g(x)是,取x=-1,,h(x)不是,函数是区间上的增长函数,函数不是;(2)依题意,,而n>0,关于x的一次函数是增函数,x=-4时,所以n2-8n>0得n>8,从而正整数n的最小值为9;(3)依题意,,而,f(x)在区间[-a2,a2]上是递减的,则x,x+4不能同在区间[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]时,f(x)≥0,x∈[0,2a2]时,f(x)≤0,若2a2<4≤4a2,当x=-2a2时,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因为:当4a2<4时,①x+4≤-a2,f(x+4)>f(x)显然成立;②-a2<x+4<a2时,x<a2-4<-3a2,f(x+4)=-(x+4)>-a2,f(x)=x+2a2<-a2,f(x+4)>f(x);③x+4>a2时,f(x+4)=(x+4)-2a2>x+2a2≥f(x),综上知,当-1<a<1时,为上的增长函数,所以实数a的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.18、(1)证明见解析(2)为单调递减函数,不等式的解集见解析.【解析】(1)利用已知条件令,求出的解析式,利用奇函数的定义判断为奇函数,即可得证;(2)由(1)得,原不等式变成,利用函数单调性化为含有参数的一元二次不等式,求解即可.【小问1详解】证明:∵,令,∴,即,又∵,∴为奇函数,有题意可知,的图象关于成中心对称图形;【小问2详解】易知函数为单调递增函数,且对于恒成立,则函数在上为单调递减函数,由(1)知,的图象关于成中心对称图形,即,不等式得:,即,则,整理得,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.19、(1)1;(2)见解析;(3)【解析】(1)根据f(-x)=-f(x)代入求得a值;(2)f(x)是定义域R上的单调减函数,利用定义证明即可;(3)根据题意把不等式化为t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范围【详解】(1)函数f(x)=-,x∈R,且f(-x)=-f(x),∴-=-+,∴a=+=+=1;(2)f(x)=-是定义域R上的单调减函数,证明如下:任取x1、x2∈R,且x1<x2,则f(x1)-f(x2)=(-)-(-)=-=,由(+1)(+1)>0,当x1<x2时,<,∴->0,∴f(x1)>f(x2),∴f(x)是定义域R上的单调减函数;(3)对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,则f(t2-4t)<-f(-k)=f(k),根据f(x)是定义域R上的单调减函数,得t2-4t>k,设g(t)=t2-4t,t∈R,则g(t)=(t-2)2-4≥-4,∴k的取值范围是k<-4【点睛】本题考查了函数的奇偶性与单调性应用问题,也考查了不等式恒成立问题,是中档题20、(1)(2)【解析】(1)由三角函数中平方关系求得,再由诱导公式可商数关系化简求值;(2)考虑到已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论