2026年高考物理模拟试卷重点知识题型-静电场(2025年12月)_第1页
2026年高考物理模拟试卷重点知识题型-静电场(2025年12月)_第2页
2026年高考物理模拟试卷重点知识题型-静电场(2025年12月)_第3页
2026年高考物理模拟试卷重点知识题型-静电场(2025年12月)_第4页
2026年高考物理模拟试卷重点知识题型-静电场(2025年12月)_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2026年高考物理模拟试卷重点知识题型整理——静电场(2025年12月)一.选择题(共8小题)1.两个分别带有电荷量﹣Q和+3Q的相同金属小球(均可视为点电荷),固定在相距为r的两处,它们间库仑力的大小为F.两小球相互接触后将其固定距离变为r2A.112F B.34F C.432.如图,电荷量为q1和q2的两个点电荷分别位于P点和Q点。已知在P、Q连线上某点R处的电场强度为零,且PR=2RQ.则()A.q1=2q2 B.q1=4q2 C.q1=﹣2q2 D.q1=﹣4q23.两个相同的金属小球(均可看作点电荷),原来所带的电荷量分别为+5q和﹣q,相互间的库仑力大小为F.现将它们相接触,再分别放回原处,则两金属小球间的库仑力大小变为()A.9F5 B.F C.4F5 D4.如图所示,M、N两点分别放置两个等量异种电荷,A为它们连线的中点,B为连线上靠近N的一点,C为连线的中垂线上处于A点上方的一点,在A、B、C三点中()A.场强最小的点是A点,电势最高的点是B点 B.场强最小的点是A点,电势最高的点是C点 C.场强最小的点是C点,电势最高的点是B点 D.场强最小的点是C点,电势最高的点是A点5.如图,半径为R的均匀带正电薄球壳,其上有一小孔A,已知壳内的场强处处为零,壳外空间的电场与将球壳上的全部电荷集中于球心O时在壳外产生的电场一样,一带正电的试探电荷(不计重力)从球心以初动能Ek0沿OA方向射出,下列关于试探电荷的动能Ek与离开球心的距离r的关系图线,可能正确的是()A. B. C. D.6.一带电粒子仅在电场力作用下从A点开始以﹣v0.做直线运动,其v﹣t图象如图所示,粒子在t0时刻运动到B点,3t0时刻运动到C点,以下判断正确的是()A.A、B、C三点的电势关系为φB>φA>φC B.A、B、C三点的场强大小关系为EC>EB>EA C.粒子从A点经B点运动到C点,电势能先增加后减少 D.粒子从A点经B点运动到C点,电场力先做正功后做负功7.如图所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O处的电势为0V,点A处的电势为6V,点B处的电势为3V,则电场强度的大小为()A.200V/m B.2003V/m C.100V/m D.1003V/m8.如图是一簇未标明方向、由单一点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点,若带电粒子在运动中只受电场力作用,根据此图可判断出该带电粒子()A.电性与场源电荷的电性相同 B.在a、b两点所受电场力大小Fa>Fb C.在a、b两点时速度大小va<vb D.在a、b两点的电势能Ea>Eb二.多选题(共4小题)(多选)9.一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左,不计空气阻力,则小球()A.做直线运动 B.做曲线运动 C.速率先减小后增大 D.速率先增大后减小(多选)10.如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN.P点在y轴右侧,MP⊥ON.则()A.M点的电势比P点高 B.将负电荷由O点移动到P点,电场力做正功 C.M、N两点间的电势差大于O、M两点间的电势差 D.在O点静止释放一带正电粒子,该粒子将沿y轴正方向做直线运动(多选)11.如图所示,用两根长度相同的绝缘细线把一个质量为0.1kg的小球A悬挂在水平板的M、N两点,A上带有Q=3.0×10﹣6C的正电荷,两线夹角为120°,两线上的拉力大小分别为F1和F2,A的正下方0.3m处放有一带等量异种电荷的小球B,B与绝缘支架的总质量为0.2kg(重力加速度取g=10m/s2;静电力常量k=9.0×109N•m2/C2,A、B球可视为点电荷),则()A.支架对地面的压力大小为2.0N B.两线上的拉力大小F1=F2=1.9N C.将B水平右移,使M、A、B在同一直线上,此时两线上的拉力大小F1=1.225N,F2=1.0N D.将B移到无穷远处,两线上的拉力大小F1=F2=0.866N(多选)12.静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小 B.在M、N两点间,粒子的轨迹一定与某条电场线重合 C.粒子在M点的电势能不低于其在N点的电势能 D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行三.填空题(共4小题)13.如图,q1、q2、q3分别表示在一条直线上的三个点电荷,已知q1与q2之间的距离为l1,q2与q3之间的距离为l2,且每个电荷都处于平衡状态。(1)如q2为正电荷,则q1为电荷,q3为电荷。(2)q1、q2、q3三者电量大小之比是::。14.图中A、B、C、D是匀强电场中一正方形的四个顶点,已知A、B、C三点的电势分别为φA=15V,φB=3V,φC=﹣3V由此可得D点电势φD=v。15.如图所示,在带电+Q的带电体附近有两个相互接触的金属导体A和B,均放在绝缘支座上.若先将+Q移走,再把A、B分开,则A电,B电;若先将A、B分开,再移走+Q,则A电,B电.16.如图所示为等量异种电荷的电场线,P、Q为电场线上的两点,可以判断出两点的场强EP>EQ,判断的依据是;还可以判断出两点的电势ϕP>ϕQ,判断的依据是。四.解答题(共4小题)17.如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力)。(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置。(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置。(3)若将左侧电场Ⅱ整体水平向右移动Ln(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I18.如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m,电荷量为e,加速电场电压为U0,偏转电场可看作匀强电场,极板间电压为U,极板长度为L,板间距为d.(1)忽略电子所受重力,求电子射入偏转电场时初速度v0和从电场射出时沿垂直板面方向的偏转距离Δy;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U=2.0×102V,d=4.0×10﹣2m,m=9.1×10﹣31kg,e=1.6×10﹣19C,g=10m/s2.(3)极板间既有电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”的φG概念,并简要说明电势和“重力势”的共同特点.19.如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ=37°,半径r=2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E=2×105N/C、方向垂直于斜轨向下的匀强电场。质量m=5×10﹣2kg、电荷量q=+1×10﹣6C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C点以速度v0=3m/s冲上斜轨。以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向。已知斜轨与小物体间的动摩擦因数μ=0.25.设小物体的电荷量保持不变,取g=10m/s2.sin37°=0.6,cos37°=0.8。(1)求弹簧枪对小物体所做的功;(2)在斜轨上小物体能到达的最高点为P,求CP的长度。20.如图,竖直平面内有方向水平向右的匀强电场,一质量为m、带电量为﹣q(q>0)的粒子从电场中的A点以大小为v的速度向右上方发射,发射方向与电场方向的夹角为θ.粒子运动轨迹的最高点位于A点的左侧上方,粒子在最高点的速度大小也为v。重力加速度大小为g。求:(1)电场强度的大小;(2)最高点到A点的距离。

2026年高考物理模拟试卷重点知识题型整理——答案一.选择题(共8小题)题号12345678答案CBCCACAB二.多选题(共4小题)题号9101112答案BCADBCAC一.选择题(共8小题)1.两个分别带有电荷量﹣Q和+3Q的相同金属小球(均可视为点电荷),固定在相距为r的两处,它们间库仑力的大小为F.两小球相互接触后将其固定距离变为r2A.112F B.34F C.43【考点】库仑定律的表达式及其简单应用;物体之间相互接触时电荷的分配情况.【专题】计算题.【答案】C【分析】清楚两小球相互接触后,其所带电量先中和后均分。根据库仑定律的内容,根据变化量和不变量求出问题。【解答】解:接触前两个点电荷之间的库仑力大小为F=kQ⋅3Qr2,两个相同的金属球各自带电,接触后再分开,其所带电量先中和后均分,所以两球分开后各自带电为+Q,距离又变为原来的12,库仑力为F′=所以两球间库仑力的大小为43故选:C。【点评】本题考查库仑定律及带电体电量的转移问题。2.如图,电荷量为q1和q2的两个点电荷分别位于P点和Q点。已知在P、Q连线上某点R处的电场强度为零,且PR=2RQ.则()A.q1=2q2 B.q1=4q2 C.q1=﹣2q2 D.q1=﹣4q2【考点】电场强度的叠加;点电荷与均匀带电球体(球壳)周围的电场.【答案】B【分析】根据点电荷的电场强度公式,由点电荷电场强度的叠加求解。【解答】解:已知在P、Q连线上某点R处的电场强度为零,根据点电荷的电场强度公式得kq1(PR)2=kq解得:q1=4q2。故选:B。【点评】理解点电荷的电场强度公式及电场强度的叠加,并掌握电场强度的矢量性。3.两个相同的金属小球(均可看作点电荷),原来所带的电荷量分别为+5q和﹣q,相互间的库仑力大小为F.现将它们相接触,再分别放回原处,则两金属小球间的库仑力大小变为()A.9F5 B.F C.4F5 D【考点】库仑定律的表达式及其简单应用.【专题】电场力与电势的性质专题.【答案】C【分析】两个完全相同的小球带的是异种电荷,那么当它们接触后,它们带的电荷将先中和,之后再将剩余的电荷量平分.找到小球带的电量的关系之后,根据库仑力的公式就可以求得作用力的大小.【解答】解:设两个球之间的距离为r,根据库仑定律可得,在它们相接触之前,相互间的库仑力大小F为,F=k5q⋅qr2=当将它们相接触之后,它们的电荷量先中和,再平分,此时每个球的电荷量为+2q,所以,此时两个球之间的相互的排斥力为F′,则F′=k2q⋅2qr2=所以C正确,故选:C。【点评】解决本题的关键就是掌握住电荷平分的原则,当完全相同的金属小球互相接触时,它们的电荷量将会平分.4.如图所示,M、N两点分别放置两个等量异种电荷,A为它们连线的中点,B为连线上靠近N的一点,C为连线的中垂线上处于A点上方的一点,在A、B、C三点中()A.场强最小的点是A点,电势最高的点是B点 B.场强最小的点是A点,电势最高的点是C点 C.场强最小的点是C点,电势最高的点是B点 D.场强最小的点是C点,电势最高的点是A点【考点】等量异种电荷的电场线分布;等量异种电荷的电势分布.【专题】电场力与电势的性质专题.【答案】C【分析】根据等量异种电荷电场线的分布去比较场强的大小,以及电势的高低.沿着电场线方向电势降低.【解答】解:根据等量异种电荷电场线的分布,知道EB>EA>EC,场强最小的是C点。等量异种电荷连线的垂直平分线是一条等势线,知ΦA=ΦC,沿着电场线方向电势逐渐降低,异种电荷间的电场线由正电荷指向负电荷,知ΦB>ΦA,所以电势最高点是B点。故A、B、D错误,C正确。故选:C。【点评】解决本题的关键是熟悉等量异种电荷周围电场线的分布以及知道等量异种电荷间连线的垂直平分线是等势线.5.如图,半径为R的均匀带正电薄球壳,其上有一小孔A,已知壳内的场强处处为零,壳外空间的电场与将球壳上的全部电荷集中于球心O时在壳外产生的电场一样,一带正电的试探电荷(不计重力)从球心以初动能Ek0沿OA方向射出,下列关于试探电荷的动能Ek与离开球心的距离r的关系图线,可能正确的是()A. B. C. D.【考点】电场力做功与电势能变化的关系;电场强度与电场力的关系和计算.【专题】电场力与电势的性质专题.【答案】A【分析】试探电荷的动能Ek与离开球心的距离r的关系根据动能定理分析.【解答】解:在球壳内,场强处处为零,试探电荷不受电场力,其动能不变;在球壳外,取一段极短距离内,认为库仑力不变,设为F,根据动能定理得:ΔEk=FΔr则得:F=根据数学知识得知:ΔEkΔr等于Ek﹣r图象上切线的斜率,由库仑定律知r增大,F减小,图象切线的斜率减小,故A故选:A。【点评】本题的关键是运用微元法,根据动能定理列式,分析图象的斜率的意义,即可解答.6.一带电粒子仅在电场力作用下从A点开始以﹣v0.做直线运动,其v﹣t图象如图所示,粒子在t0时刻运动到B点,3t0时刻运动到C点,以下判断正确的是()A.A、B、C三点的电势关系为φB>φA>φC B.A、B、C三点的场强大小关系为EC>EB>EA C.粒子从A点经B点运动到C点,电势能先增加后减少 D.粒子从A点经B点运动到C点,电场力先做正功后做负功【考点】匀强电场中电势差与电场强度的关系;电场力做功与电势能变化的关系.【专题】定性思想;推理法;电场力与电势的性质专题;推理论证能力.【答案】C【分析】根据速度与时间图象可知,加速度是恒定,则可确定电场力大小,进而得出电场强度大小;因粒子的电性不知,则无法确定电场强度的方向,由于从A到B,动能增加,则电场力对粒子做正功,导致电势能减小,从而即可求解。【解答】解:A、由于粒子不知电性,无法确定电场强度的方向,因此无法比较电势的高低,故A错误;B、由v﹣t图象的斜率表示加速度,可知,粒子的加速度先增大后减小,则B点加速度最大;根据牛顿第二定律得qE=ma可知B点电场强度最大,故B错误;C、由图象可知,粒子从A点经B点运动到C点速度先减小后增大,所以动能先减小后增大,根据能量守恒定律,电势能应该先增大后减小,故C正确;D、由图象可知,粒子从A点经B点运动到C点速度先减小后增大,根据动能定理可知电场力先做负功,后做正功,故D错误;故选:C。【点评】考查由速度与时间图象,来确定加速度大小与方向的方法,理解电场力做功与电势能变化关系,以及动能的变化,注意粒子不知电性,因此电势高低无法确定。7.如图所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O处的电势为0V,点A处的电势为6V,点B处的电势为3V,则电场强度的大小为()A.200V/m B.2003V/m C.100V/m D.1003V/m【考点】等分法求电势;等势面及其与电场线的关系;匀强电场中电势差与电场强度的关系.【专题】带电粒子在电场中的运动专题.【答案】A【分析】根据题中的数据找出x轴方向上电势与B点相等的C点,BC两点的电势相等,即BC连线上的各点电势相等,通过几何关系,求出O点到BC的距离,由匀强电场中电势差与电场强度的关系可得出电场强度的大小.【解答】解:OA的中点C点,由题意可得C点的电势为3V,即BC的电势相等,连接BC,因BC的电势相等,所以匀强电场的方向垂直于BC,过O点做BC的垂线相较于D点,由几何关系得:OD=OC•sin∠BCO=1.5cm=1.5×10﹣2m则电场强度为:E=UODOD=31.5×1故选:A。【点评】在匀强电场中,电场是处处相等的,电场强度,电势差与沿电场方向上的距离有关系E=Ud,值得注意的是该关系式只适用于8.如图是一簇未标明方向、由单一点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点,若带电粒子在运动中只受电场力作用,根据此图可判断出该带电粒子()A.电性与场源电荷的电性相同 B.在a、b两点所受电场力大小Fa>Fb C.在a、b两点时速度大小va<vb D.在a、b两点的电势能Ea>Eb【考点】根据带电粒子的运动轨迹判断功与能的转化情况;电场强度与电场力的关系和计算;根据电场线的疏密判断场强大小;带电粒子的轨迹、受力、电性、电场方向的互判.【专题】压轴题;电场力与电势的性质专题.【答案】B【分析】电场线是从正电荷或者无穷远处发出,到负电荷或无穷远处为止,沿电场线的方向,电势降低,电场线密的地方电场的强度大,电场线疏的地方电场的强度小.【解答】解:A、电荷受电场力的方向指向运动轨迹弯曲的内侧,由图可知,若是正电荷受到的电场力的方向是向左的,所以产生电场的电荷应该是负电荷,若是负电荷受到的电场力的方向是向左的,所以产生电场的电荷应该是正电荷,所以电性与场源电荷的电性相反,A错误;B、电场线的疏密表示场强,由图知Fa>Fb所以B正确;C、D若是正电荷在从a到b的过程中,电场力做负功,所以电荷的电势能增加动能减小;若是负电荷在从a到b的过程中,电场力也做负功,所以电荷的电势能增加动能减小,即在a、b两点时速度大小va>vb电势能Ea<Eb所以CD错误;故选:B。【点评】电场线密的地方电场的强度大,电场线疏的地方电场的强度小,沿电场线的方向,电势降低,电场力做正功,电势能减小,电场力做负功,电势能增加.二.多选题(共4小题)(多选)9.一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左,不计空气阻力,则小球()A.做直线运动 B.做曲线运动 C.速率先减小后增大 D.速率先增大后减小【考点】带电粒子(计重力)在匀强电场中的曲线运动.【专题】电场力与电势的性质专题.【答案】BC【分析】根据合力的方向与速度方向的关系判断小球做直线运动还是曲线运动,根据合力的方向与速度方向的关系判断小球的速率变化.【解答】解:A、小球受重力和电场力两个力作用,合力的方向与速度方向不在同一条直线上,小球做曲线运动。故A错误,B正确。C小球所受的合力与速度方向先成钝角,然后成锐角,可知合力先做负功然后做正功,则速度先减小后增大。故C正确,D错误。故选:BC。【点评】解决本题的关键知道物体做直线运动还是曲线运动的条件,关键看合力的方向与速度方向的关系.(多选)10.如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN.P点在y轴右侧,MP⊥ON.则()A.M点的电势比P点高 B.将负电荷由O点移动到P点,电场力做正功 C.M、N两点间的电势差大于O、M两点间的电势差 D.在O点静止释放一带正电粒子,该粒子将沿y轴正方向做直线运动【考点】非匀强电场中电势差大小的比较和应用;电荷性质、电场力方向和电场强度方向的相互判断;电场力做功与电势能变化的关系;通过电场线的方向判断电势的高低.【专题】电场力与电势的性质专题.【答案】AD【分析】电场线密的地方电场的强度大,电场线疏的地方电场的强度小,电场力做正功,电势能减小,电场力做负功,电势能增加.【解答】解:A、过M、P、N做等势线,可得到过P点的等势线通过M、N之间,因顺着电场线电势降低,则有φM>φP>φN,故A正确;B、将负电荷由O点移到P点,因UOP>0,所以W=﹣qUOP<0,则负电荷做负功,故B错误;C、由U=Ed可知,MN间的平均场强小于OM间的平均场强,故MN两点间的电势差小于OM两点间的电势差,C错误;D、根据电场线的分布特点会发现,电场线关于y轴两边对称,故y轴上的场强方向在y轴上,所以在O点静止释放一带正电粒子,其所受电场力沿y轴正方向,则该粒子将沿y轴正方向做直线运动,故D正确。故选:AD。【点评】加强基础知识的学习,掌握住电场线的特点,即可解决本题.(多选)11.如图所示,用两根长度相同的绝缘细线把一个质量为0.1kg的小球A悬挂在水平板的M、N两点,A上带有Q=3.0×10﹣6C的正电荷,两线夹角为120°,两线上的拉力大小分别为F1和F2,A的正下方0.3m处放有一带等量异种电荷的小球B,B与绝缘支架的总质量为0.2kg(重力加速度取g=10m/s2;静电力常量k=9.0×109N•m2/C2,A、B球可视为点电荷),则()A.支架对地面的压力大小为2.0N B.两线上的拉力大小F1=F2=1.9N C.将B水平右移,使M、A、B在同一直线上,此时两线上的拉力大小F1=1.225N,F2=1.0N D.将B移到无穷远处,两线上的拉力大小F1=F2=0.866N【考点】库仑力作用下的受力平衡问题;力的合成与分解的应用;牛顿第三定律的理解与应用.【专题】电场力与电势的性质专题.【答案】BC【分析】当B在A的正下方时,分别对AB受力分析利用共点力平衡即可求得,当B移到使M、A、B在同一直线上时,对A受力分析利用共点力平衡即可判断【解答】解:A、地面对支架的支持力为F=mBg-kQB、因两绳夹角为120°,故两绳的拉力之和等于其中任意绳的拉力,故F=mAg+C、将B水平右移,使M、A、B在同一直线上时,对A球受力分析可知:F1sin30°+F2sin30°﹣mg﹣F库sin30°=0F1cos30°﹣F2cos30°﹣F库cos30°=0F库联立解得F1=1.225N,F2=1.0N,故C正确D、将B移到无穷远时,AB间的库仑力消失,故两绳的拉力F=mg=1N,故D错误故选:BC。【点评】本题主要考查了对AB求的受力分析,抓住在库仑力作用下的共点力平衡即可(多选)12.静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小 B.在M、N两点间,粒子的轨迹一定与某条电场线重合 C.粒子在M点的电势能不低于其在N点的电势能 D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行【考点】从能量转化与守恒的角度解决电场中的问题.【专题】定性思想;归纳法;带电粒子在电场中的运动专题;推理论证能力.【答案】AC【分析】电场线是一种理想化的物理模型,不是带电粒子的运动轨迹;电场力做正功时,电势能减小;曲线运动的条件是物体受到的合力的方向与运动方向不在同一条直线上。【解答】解:A、由于电场的特点未知,对于带电粒子,其运动过程中,粒子的速度大小可能先增大后减小。故A正确;B、带电粒子在只受电场力,且电场线是直线时运动轨迹才与电场线重合,由于该电场未知,所以粒子的轨迹不一定与某条电场线重合。故B错误;C、粒子从静止开始运动,电场力一定做正功,所以粒子在M点的电势能不低于其在N点的电势能。故C正确;D、若粒子运动的轨迹为曲线,粒子在N点所受电场力的方向为电场线的切线方向,粒子轨迹的切线方向为速度的方向,根据曲线运动的条件可知,此时电场力的方向与速度的方向一定不能平行。故D错误故选:AC。【点评】该题考查对电场线的理解以及带电粒子在电场中运动的特点,要注意电场线的特点:电场线疏密表示场强大小,切线方向表示场强的方向,电场线不是带电粒子的运动轨迹。三.填空题(共4小题)13.如图,q1、q2、q3分别表示在一条直线上的三个点电荷,已知q1与q2之间的距离为l1,q2与q3之间的距离为l2,且每个电荷都处于平衡状态。(1)如q2为正电荷,则q1为负电荷,q3为负电荷。(2)q1、q2、q3三者电量大小之比是(l1+l2l2)2:【考点】三(多)个点电荷在一条直线上时的平衡问题.【专题】电场力与电势的性质专题.【答案】见试题解答内容【分析】(1)解决本题一定要把握“每个电荷都处于平衡状态”这一特点进行分析,已知q2为负电荷,可以利用假设法判断q1和q3的电性,如假设q1带正电,其它电荷是否平衡等,也可以利用“两同夹异,近小远大”(三个电荷处于平衡时两边电性相同和中间相反,中间电荷离电量小的近,离电量大的远)进行判断。(2)三个电荷处于同一直线上,每个电荷受两个库仑力作用处于平衡状态,据此列方程即可求解。【解答】解:(1)假设q1带负电,要使q2平衡则q3也应带负电。如果q1带正电,要使q2平衡则q3也应带正电。但是q1、q3不能平衡,所以q1、q3都带负电荷。(2)由于三个电荷均处于平衡状态,由库仑定律建立如下平衡式:对q1:k对q2:k对q3:k解得:q1:q2:q3=(l1+l2l2)2答:(1)如q2为正电荷,则q1、q3都带负电荷。(2)q1、q2、q3三者电量的大小之比为(l1+l2l2)2:【点评】本题考查了库仑定律在电荷平衡中的应用,对于三个电荷平衡可以利用“两同夹异,近小远大”的规律进行电性判断,本题的难点在于计算,学生列出方程容易,但是计算正确难。14.图中A、B、C、D是匀强电场中一正方形的四个顶点,已知A、B、C三点的电势分别为φA=15V,φB=3V,φC=﹣3V由此可得D点电势φD=9v。【考点】匀强电场中电势差与电场强度的关系.【专题】电场力与电势的性质专题.【答案】见试题解答内容【分析】连接AC,在AC上找出与B点等电势点,作出等势线,再过D作出等势线,在AC线上找出与D等势点,再确定D点的电势。【解答】解:连接AC,将AC三等分,标上三等分点E、F,则根据匀强电场中沿电场线方向相等距离,电势差相等可知,E点的电势为3V,F点的电势为9V.连接BE,则BE为一条等势线,根据几何知识可知,DF∥BE,则DF也是一条等势线,所以D点电势φD=9V。故答案为:9。【点评】本题的技巧是找等势点,作等势线,充分利用匀强电场的等势面相互平行,而且沿电场线方向相等距离,电势差相等进行作图。15.如图所示,在带电+Q的带电体附近有两个相互接触的金属导体A和B,均放在绝缘支座上.若先将+Q移走,再把A、B分开,则A不带电,B不带电;若先将A、B分开,再移走+Q,则A带负电,B带正电.【考点】静电感应与感应起电.【专题】电场力与电势的性质专题.【答案】见试题解答内容【分析】将带正电的导体棒靠近两个不带电的导体AB,靠感应起电使物体带电,带电的实质是电荷的移动,总电荷量保持不变.【解答】解:若先移走带正电的导体棒,此时导体A和B中的电荷又发生中和,不再带电,再把导体A和B分开,同样不再带电,所以此时A不带电,B不带电.先把导体A和B分开,再移走带正电的导体棒,导体A和B由于感应起电带上异种电荷,所以此时A带负电,B带正电.故答案为:不带;不带;带负;带正.【点评】解决本题的关键知道摩擦起电、感应起电、接触带电的实质都是电荷的移动,电荷的总量保持不变.16.如图所示为等量异种电荷的电场线,P、Q为电场线上的两点,可以判断出两点的场强EP>EQ,判断的依据是P点所在位置处的电场线较Q点处的密;还可以判断出两点的电势ϕP>ϕQ,判断的依据是沿着电场线方向电势降低。【考点】电场线的定义及基本特征;电势的定义、单位和物理意义及用定义式计算电势.【专题】定性思想;推理法;电场力与电势的性质专题.【答案】见试题解答内容【分析】根据电场线分布得到场强大小关系,沿电场线方向电势降低。【解答】解:电场线的疏密表示电场强度的强弱每一条可知,P处的电场线密,所以P点的电场强度大。根据电场线的特点,沿电场线的方向电势降低,所以电势ϕP>ϕQ,故答案为:P点所在位置处的电场线较Q点处的密;沿着电场线方向电势降低。【点评】由电场强度大小和电场线疏密程度一致,场强方向和电场线方向一致可得:在对称分布的电场线中,在两个对称点的场强大小相等,方向对称。四.解答题(共4小题)17.如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力)。(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置。(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置。(3)若将左侧电场Ⅱ整体水平向右移动Ln(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I【考点】从能量转化与守恒的角度解决电场中的问题.【专题】计算题;压轴题.【答案】见试题解答内容【分析】(1)此问分为两个过程,一是在电场Ⅰ区域的加速运动,运用能量的关系可求出加速后的速度;二是在电场Ⅱ区域内的偏转,运用类平抛的知识可求出偏转距离,从而得到电子离开ABCD区域的位置。(2)首先设出释放点的坐标,在运用在电场I中的加速和在电场Ⅱ中的类平抛运动,计算出表示xy的乘积的方程,满足此式的点即为符合要求的点。(3)该问分为三个阶段,一是在电场I中的直线加速运动,二是在电场Ⅱ中的类平抛运动,三是从电场Ⅱ射出后的匀速直线运动,结合第二问的解题思路,可求出结果。【解答】解:(1)设电子的质量为m,电量为e,在电场I中释放后将做初速度为零的匀加速直线运动,出区域I时的速度为v0,接着进入电场Ⅱ做类平抛运动,假设电子从CD边射出,出射点纵坐标为y,对电子的整个运动过程运用动能定理和匀变速直线运动公式有:eEL=1(L以上两式联立解得:y=14L,所以原假设成立,即电子离开ABCD(2)设释放点在电场区域I中,其坐标为(x,y),在电场I中电子被加速到v1,然后进入电场Ⅱ做类平抛运动,并从D点离开,有:eEx=y=以上两式联立解得:xy=L24(3)设电子从(x,y)点释放,在电场I中加速到v2,进入电场Ⅱ后做类平抛运动,在高度为y′处离开电场Ⅱ时的情景与(2)中类似,然后电子做匀速直线运动,经过D点,则有:eEx=1y-vyy'以上各式解得:xy=L2(答:(1)在该区域AB边的中点处由静止释放电子,电子从(-2L,1(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,所有释放点为满足xy=L(3)若将左侧电场Ⅱ整体水平向右移动Ln(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),在电场I区域内由静止释放电子的所有位置为xy=【点评】本题考查了带电粒子在简化的电子枪模型中的运动情况,是一道拓展型试题,与常见题所不同的是,一般试题是已知电子的出发点,然后求电子在电场作用下运动过程中的轨迹或离开电场的出射点位置,而本题则是反其道而行之,是规定了电子的出射点,要反推出在何处发出电子才能满足所述要求。从内容看,该题涉及的是电子在电场中的运动,这部分知识学生相对比较熟悉,也是经常训练的题型之一,只不过本题作了拓展。18.如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m,电荷量为e,加速电场电压为U0,偏转电场可看作匀强电场,极板间电压为U,极板长度为L,板间距为d.(1)忽略电子所受重力,求电子射入偏转电场时初速度v0和从电场射出时沿垂直板面方向的偏转距离Δy;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U=2.0×102V,d=4.0×10﹣2m,m=9.1×10﹣31kg,e=1.6×10﹣19C,g=10m/s2.(3)极板间既有电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”的φG概念,并简要说明电势和“重力势”的共同特点.【考点】从能量转化与守恒的角度解决电场中的问题;牛顿第二定律的简单应用;动能定理的简单应用;常见力做功与相应的能量转化.【专题】计算题;定量思想;推理法;电场力与电势的性质专题.【答案】见试题解答内容【分析】(1)根据动能定理,即可求得加速的速度大小,再依据类平抛运动处理规律,结合运动学公式,及运动的合成与分解,从而即可求解;(2)依据提供的数据,从而计算出重力与电场力,并求得它们的比值,即可求解;(3)根据电势是电势能与电荷量的比值,故重力势等于重力势能与质量的比值,再根据两者的联系,从而确定共同点.【解答】解:(1)电子在加速场中加速,根据动能定理,则有:eU0=解得:v0=电子在偏转电场中加速,做类平抛运动,将其运动分解成速度方向匀速直线运动,与电场强度方向做初速度为零的匀加速直线运动,则有:速度方向的位移为:L=v0t;电场强度方向的位移为:Δy=由牛顿第二定律有:a=且E=综上所述,解得:Δy=(2)已知U=2.0×102V,d=4.0×10﹣2m,m=9.1×10﹣31kg,e=1.6×10﹣19C,g=10m/s2.电子所受重力为:G=mg=9.1×10﹣30N电子受到的电场力为:F电=eUd=8×10﹣那么GF电=9.1×1由于F电>>G,所以重力忽略不计,(3)电场中某点电势φ定义为电荷在该点的电势能EP与其电荷量q的比值,即:φ=由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能EG与其质量m的比值,叫做“重力势”,即φG=E电势φ与重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定.答:(1)忽略电子所受重力,电子射入偏转电场时初速度2eU从电场射出时沿垂直板面方向的偏转距离UL(2)根据GF电≈10(3)电势φ的定义式为:φ=E电势和“重力势”的共同特点为:电势φ与重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定.【点评】考查了动能定理的内容,掌握类平抛运动处理规律,掌握运动的合成与分解的应用,注意类比法的内涵,及如何归纳物理量间的共同点是解题的关键.19.如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ=37°,半径r=2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E=2×105N/C、方向垂直于斜轨向下的匀强电场。质量m=5×10﹣2kg、电荷量q=+1×10﹣6C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C点以速度v0=3m/s冲上斜轨。以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向。已知斜轨与小物体间的动摩擦因数μ=0.25.设小物体的电荷量保持不变,取g=10m/s2.sin37°=0.6,cos37°=0.8。(1)求弹簧枪对小物体所做的功;(2)在斜轨上小物体能到达的最高点为P,求CP的长度。【考点】从能量转化与守恒的角度解决电场中的问题;动能定理的简单应用.【专题】压轴题;动能定理的应用专题.【答案】见试题解答内容【分析】(1)设弹簧枪对小物体做功为Wf,由动能定理即可求解;(2)对小物体进行受力分析,分析物体的运动情况,根据牛顿第二定律求出加速度,结合运动学基本公式即可求解。【解答】解:(1)设弹簧枪对小物体做功为Wf,由动能定理得Wf﹣mgr(l﹣cosθ)=12mv02代入数据得:Wf=0.475J…②(2)取沿平直斜轨向上为正方向。设小物体通过C点进入电场后的加速度为a1,由牛顿第二定律得:﹣mgsinθ﹣μ(mgcosθ+qE)=ma1…③小物体向上做匀减速运动,经t1=0.1s后,速度达到v1,有:v1=v0+a1t1…④由③④可知v1=2.1m/s,设运动的位移为s1,有:s1=v0t1+12a1t12电场力反向后,设小物体的加速度为a2,由牛顿第二定律得:﹣mgsinθ﹣μ(mgcosθ﹣qE)=ma2…⑥设小物体以此加速度运动到速度为0,运动的时间为t2,位移为s2,有:0=v1+a2t2…⑦s2=v1t2+12a2t22设CP的长度为s,有:s=s1+s2…⑨联立相关方程,代入数据解得:s=0.57m答:(1)弹簧枪对小物体所做的功为0.475J;(2)在斜轨上小物体能到达的最高点为P,CP的长度为0.57m。【点评】本题主要考查了动能定理、牛顿第二定律及运动学基本公式的直接应用,要求同学们能正确对物体受力分析,确定物体的运动情况,难度适中。20.如图,竖直平面内有方向水平向右的匀强电场,一质量为m、带电量为﹣q(q>0)的粒子从电场中的A点以大小为v的速度向右上方发射,发射方向与电场方向的夹角为θ.粒子运动轨迹的最高点位于A点的左侧上方,粒子在最高点的速度大小也为v。重力加速度大小为g。求:(1)电场强度的大小;(2)最高点到A点的距离。【考点】从能量转化与守恒的角度解决电场中的问题.【专题】计算题;定量思想;推理法;带电粒子在电场中的运动专题;分析综合能力.【答案】(1)电场强度的大小为mg(cosθ+1)qsinθ(2)最高点到A点的距离为v2【分析】粒子受到水平向左的电场力和竖直向下的重力,所以粒子在水平方向上先向右做匀减速直线运动,再向左做匀加速直线运动,在竖直方向做竖直上抛运动,到达最高点时,竖直方向的速度为零,根据竖直方向的运动特点求解运动时间,再在水平方向上由运动学公式和牛顿第二定律求解电场强度;根据运动学公式求解出粒子在竖直方向和水平方向的位移,再进行合成即为最高点到A点的距离。【解答】解:(1)根据题意可知,粒子受到水平向左的电场力和竖直向下的重力,所以粒子在水平方向上先向右做匀减速直线运动,再向左做匀加速直线运动,在竖直方向做竖直上抛运动,到达最高点时,竖直方向的速度为零,从开始运动到运动到最高点,在竖直方向上:0﹣v•sinθ=﹣gt,所以运动时间为:t=v⋅sinθ水平方向上,以向右为正方向,根据运动学公式有:-v=v联立可得电场强度的大小为:E=mg(cosθ+1)(2)到最高点时,竖直方向发生的位移为:y=(vsinθ水平方向发生的位移为:x=v⋅cosθ+(-v)所以最高点到A点的距离为:l=x答:(1)电场强度的大小为mg(cosθ+1)qsinθ(2)最高点到A点的距离为v2【点评】解决该题需要明确知道粒子在运动过程的受力情况,掌握粒子的运动情况,知道将粒子的运动情况分解到水平和竖直方向去分析,熟记运动学的公式。

考点卡片1.力的合成与分解的应用【知识点的认识】本考点针对比较复杂的题目,题目涉及到力的合成与分解的综合应用。【命题方向】假期里,一位同学在厨房里协助妈妈做菜,对菜刀发生了兴趣.他发现菜刀的刀刃前部和后部的厚薄不一样,刀刃前部的顶角小,后部的顶角大(如图所示),下列有关刀刃的说法合理的是()A、刀刃前部和后部厚薄不匀,仅是为了打造方便,外形美观,跟使用功能无关B、在刀背上加上同样的压力时,分开其他物体的力跟刀刃厚薄无关C、在刀背上加上同样的压力时,顶角越大,分开其他物体的力越大D、在刀背上加上同样的压力时,顶角越小,分开其他物体的力越大分析:根据力的平行四边形定则可知,相同的压力下,顶角越小,分力越大;相同的顶角下,压力越大,分力越大.解答:把刀刃部分抽象后,可简化成一个等腰三角劈,设顶角为2θ,背宽为d,侧面长为l,如图乙所示当在劈背施加压力F后,产生垂直侧面的两个分力F1、F2,使用中依靠着这两个分力分开被加工的其他物体。由对称性知,这两个分力大小相等(F1=F2),因此画出力分解的平行四边形,实为菱形,如图丙所示。在这个力的平行四边形中,取其四分之一考虑(图中阴影部分),根据它跟半个劈的直角三角形的相似关系,由关系式,得F1=F2由此可见,刀背上加上一定的压力F时,侧面分开其他物体的力跟顶角的大小有关,顶角越小,sinθ的值越小,F1和F2越大。但是,刀刃的顶角越小时,刀刃的强度会减小,碰到较硬的物体刀刃会卷口甚至碎裂,实际制造过程中为了适应加工不同物体的需要,所以做成前部较薄,后部较厚。使用时,用前部切一些软的物品(如鱼、肉、蔬菜、水果等),用后部斩劈坚硬的骨头之类的物品,俗话说:“前切后劈”,指的就是这个意思。故D正确。故选:D。点评:考查力的平行四边形定则,体现了控制变量法,同时学会用三角函数来表示力与力的关系.【解题思路点拨】对力的合成与力的分解的综合应用问题,要首先熟练掌握力的合成和力的分解的相关内容,再选择合适的合成和分解方法进行解题。2.牛顿第二定律的简单应用【知识点的认识】牛顿第二定律的表达式是F=ma,已知物体的受力和质量,可以计算物体的加速度;已知物体的质量和加速度,可以计算物体的合外力;已知物体的合外力和加速度,可以计算物体的质量。【命题方向】一质量为m的人站在电梯中,电梯加速上升,加速度大小为13g,gA、43mgB、2mgC、mgD分析:对人受力分析,受重力和电梯的支持力,加速度向上,根据牛顿第二定律列式求解即可。解答:对人受力分析,受重力和电梯的支持力,加速度向上,根据牛顿第二定律N﹣mg=ma故N=mg+ma=4根据牛顿第三定律,人对电梯的压力等于电梯对人的支持力,故人对电梯的压力等于43mg故选:A。点评:本题关键对人受力分析,然后根据牛顿第二定律列式求解。【解题方法点拨】在应用牛顿第二定律解决简单问题时,要先明确物体的受力情况,然后列出牛顿第二定律的表达式,再根据需要求出相关物理量。3.牛顿第三定律的理解与应用【知识点的认识】1.内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.2.作用力与反作用力的“四同”和“三不同”:四同大小相同三不同方向不同【命题方向】题型一:牛顿第三定律的理解和应用例子:关于作用力与反作用力,下列说法正确的是()A.作用力与反作用力的合力为零B.先有作用力,然后才产生反作用力C.作用力与反作用力大小相等、方向相反D.作用力与反作用力作用在同一个物体上分析:由牛顿第三定律可知,作用力与反作用力大小相等,方向相反,作用在同一条直线上,作用在两个物体上,力的性质相同,它们同时产生,同时变化,同时消失.解答:A、作用力与反作用力,作用在两个物体上,效果不能抵消,合力不为零,故A错误.B、作用力与反作用力,它们同时产生,同时变化,同时消失,故B错误.C、作用力与反作用力大小相等、方向相反,作用在两个物体上,故C正确.D、作用力与反作用力,作用在两个物体上,故D错误.故选:C.点评:考查牛顿第三定律及其理解.理解牛顿第三定律与平衡力的区别.【解题方法点拨】应用牛顿第三定律分析问题时应注意以下几点(1)不要凭日常观察的直觉印象随便下结论,分析问题需严格依据科学理论.(2)理解应用牛顿第三定律时,一定抓住“总是”二字,即作用力与反作用力的这种关系与物体的运动状态无关.(3)与平衡力区别应抓住作用力和反作用力分别作用在两个物体上.4.动能定理的简单应用【知识点的认识】1.动能定理的内容:合外力做的功等于动能的变化量。2.表达式:W合=ΔEk=Ek末﹣Ek初3.本考点针对简单情况下用动能定理来解题的情况。【命题方向】如图所示,质量m=10kg的物体放在水平地面上,物体与地面的动摩擦因数μ=0.2,g=10m/s2,今用F=50N的水平恒力作用于物体上,使物体由静止开始做匀加速直线运动,作用时间t=6s后撤去F,求:(1)物体在前6s运动的过程中的加速度;(2)物体在前6s运动的位移(3)物体从开始运动直到最终静止的过程中克服摩擦力所做的功。分析:(1)对物体受力分析知,物体做匀加速运动,由牛顿第二定律就可求出加速度;(2)用匀变速直线运动的位移公式即可求得位移的大小;(3)对全程用动能定理,可以求得摩擦力的功。解答:(1)对物体受力分析,由牛顿第二定律得F﹣μmg=ma,解得a=3m/s2,(2)由位移公式得X=12at2=12×3×6(3)对全程用动能定理得FX﹣Wf=0Wf=FX=50×54J=2700J。答:(1)物体在前6s运动的过程中的加速度是3m/s2;(2)物体在前6s运动的位移是54m;(3)物体从开始运动直到最终静止的过程中克服摩擦力所做的功为2700J。点评:分析清楚物体的运动过程,直接应用牛顿第二定律和匀变速直线运动的规律求解即可,求摩擦力的功的时候对全程应用动能定理比较简单。【解题思路点拨】1.应用动能定理的一般步骤(1)选取研究对象,明确并分析运动过程。(2)分析受力及各力做功的情况①受哪些力?②每个力是否做功?③在哪段位移哪段过程中做功?④做正功还是负功?⑤做多少功?求出代数和。(3)明确过程始末状态的动能Ek1及Ek2。(4)列方程W总=Ek2﹣Ek1,必要时注意分析题目潜在的条件,补充方程进行求解。注意:①在研究某一物体受到力的持续作用而发生状态改变时,如涉及位移和速度而不涉及时间时应首先考虑应用动能定理,而后考虑牛顿定律、运动学公式,如涉及加速度时,先考虑牛顿第二定律。②用动能定理解题,关键是对研究对象进行准确的受力分析及运动过程分析,并画出物体运动过程的草图,以便更准确地理解物理过程和各物理量的关系。有些力在物体运动全过程中不是始终存在的,在计算外力做功时更应引起注意。5.常见力做功与相应的能量转化【知识点的认识】1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化。(2)做功的过程一定伴随着能量的转化,而且能量的转化必通过做功来实现。2.高中物理中几种常见的功能关系功能量的变化合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少电场力做正功电势能减少其他力(除重力、弹力)做正功机械能增加一对滑动摩擦力做的总功为负功系统的内能增加【解题思路点拨】如图所示,质量为m的物体静止在地面上,物体上面连着一个轻弹簧,用手拉住弹簧上端上移H,将物体缓缓提高h,拉力F做功WF,不计弹簧的质量,则下列说法正确的是()A、重力做功﹣mgh,重力势能减少mghB、弹力做功﹣WF,弹性势能增加WFC、重力势能增加mgh,弹性势能增加FHD、重力势能增加mgh,弹性势能增加WF﹣mgh分析:重力势能的变化量等于负的重力所做的功,物体缓缓提高说明速度不变,拉力F做的功等于物体重力势能的变化量与弹簧弹性势能增加量之和.解答:重力势能的变化量等于负的重力所做的功,即ΔEP=﹣WG=﹣(﹣mgh)=mgh物体缓缓提高说明速度不变,所以物体动能不发生变化,ΔE弹=WF+WG=WF﹣mgh故选:D。点评:本题主要考查了重力势能的变化量与重力做功的关系以及能量转化关系,难度不大,属于基础题.【解题思路点拨】1.常见的功能关系:合力做功——动能变化;重力做功——重力势能变化;弹力做功——弹性势能变化;摩擦力做功——内能变化;其他力做功——机械能变化。2.判断和计算做功或能量变化时,可以反其道而行之,通过计算能量变化或做功多少来进行。6.物体之间相互接触时电荷的分配情况【知识点的认识】如果两个完全一样的带电球体相互接触再分开,两个球体所带的电荷会重新分配。有以下两种情况:1.如果两个球体带同种电荷(或其中一个不带电),电荷会平均分配在两个球体上。设两个球体的电荷量分别为q1和q2,则接触之后再分开时,各自的电荷量为:q12.如果两个球体带异种电荷,电荷会先中和再平均分配到两个球体上。设两个球体的电荷量大小分别为q1和q2,则接触之后再分开时,各自的电荷量为:q1′=q2′=|这一原理叫作电荷均分原理。【命题方向】有三个相同的绝缘金属小球A、B、C,其中小球A带有3×10﹣3C的正电荷,小球B带有﹣2×10﹣3C的负电荷,小球C不带电.先将小球C与小球A接触后分开,再将小球B与小球C接触然后分开,试求这时三球的带电荷量分别为多少?分析:完全相同的带电小球接触时,若是同种电荷则将总电量平分,若是异种电荷则先中和然后将剩余电量平分.解答:当小球C和A接触后,A、C球带电为:Q1=QA2=3×10-32C再让小球B与小球C接触,此时C、B带电为:Q2=-2×10-3+1.5×10-32所以最终ABC三小球的带电量分别是:1.5×10﹣3C,﹣0.25×10﹣3C,﹣0.25×10﹣3C.答:最终ABC三小球的带电量分别是:1.5×10﹣3C,﹣0.25×10﹣3C,﹣0.25×10﹣3C.点评:完全相同的带电小球接触时,对于电量的重新分配规律要明确,注意接触后分开能平均分配的前提条件是三个球完全相同.【解题思路点拨】物体之间相互接触时电荷的分配情况的解题思路如下:1.确认接触前两个物体的电荷性质及电荷量;2.如果是同种电荷,则两个物体的带电量都等于电荷量总和的一半;3.如果是异种电荷,则两个物体的电荷量都等于中和之后剩余电荷量的一半。7.静电感应与感应起电【知识点的认识】物体有三种起电方式(1)摩擦起电:当两种物质组成的物体互相摩擦时,一些受束缚较弱的电子会转移到另一个物体上。于是,原来电中性的物体由于得到电子而带负电,失去电子的物体则带正。(2)静电感应:当一个带电体靠近导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异种电荷,电荷,远离带电体的一端带带同种电荷。这种现象叫作静电感应。利用静电感应使金属导体带电的过程叫作感应起电。(3)接触起电:将带电体与导体接触,如果带电体带负电,则由于电子之间的相互排斥,会转移到导体上一部分,使导体带上负电;如果带电体带正电,则会吸引一部分导体的电子,使导体带上正电。3.三种起电方式的比较【命题方向】如图所示,将带电棒移近两个不带电的导体球,两个导体球开始时互相接触且对地绝缘,下述几种方法中能使两球都带电的是()A、先把两球分开,再移走棒B、先移走棒,再把两球分开C、棒的带电荷量不变,两导体球不能带电D、以上说法都不对分析:将棒移近两个不带电的导体球,靠感应起电使物体带电,带电的实质是电荷的移动,总电荷量保持不变.解答:A、先把两球分开,再移走棒,两球由于感应起电带上异种电荷。故A正确。B、先移走棒,此时甲乙两球中的电荷又发生中和,不再带电,再把球分开,同样不再带电。故B错误。C、两导体球在带电的过程中,是两球中的电荷发生了移动,棒的带电量是不变的。故C错误。故A正确,BCD错误。故选:A。点评:解决本题的关键知道摩擦起电、感应起电、接触带电的实质都是电荷的移动,电荷的总量保持不变.【解题思路点拨】1.感应起电时,同种电荷会被“排斥”到远端,异种电荷会被“吸引”到近端。如果移走外部带电体,电荷会重新中和。如果远端与大地相连,那大地就是远端。2.感应起电的实质也是电子的转移,电子由物体的一部分转移到另一部分,这样物体的两端就会呈现不同的电荷,在这个过程中遵循电荷守恒定律。8.库仑定律的表达式及其简单应用【知识点的认识】1.内容:在真空中两个静止的点电荷间的作用力跟它们的电量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.2.表达式:F=kq1q2r2,式中k表示静电力常量,k=9.0×109N•3.适用条件:真空中的静止点电荷.【命题方向】题型一:对库仑定律的理解例1:真空中有两个静止的点电荷,它们之间静电力的大小为F.如果保持这两个点电荷之间的距离不变,而将它们的电荷量都变为原来的3倍,那么它们之间的静电力的大小变为()A.3FB.F3C.F分析:本题比较简单,直接利用库仑定律进行计算讨论即可.解:距离改变之前:F=kq1当电荷量都变为原来的3倍时:F1=k联立①②可得:F1=9F,故ABC错误,D正确.故选:D.点评:库仑定律应用时涉及的物理量较多,因此理清各个物理量之间的关系,可以和万有引力定律进行类比学习.题型二:库仑定律与力学的综合问题例2:在一绝缘支架上,固定着一个带正电的小球A,A又通过一长为10cm的绝缘细绳连着另一个带负电的小球B,B的质量为0.1kg,电荷量为19×10﹣6C,如图所示,将小球B缓缓拉离竖直位置,当绳与竖直方向的夹角为60°时,将其由静止释放,小球B将在竖直面内做圆周运动.已知释放瞬间绳刚好张紧,但无张力.g取10m/s(1)小球A的带电荷量;(2)释放瞬间小球B的加速度大小;(3)小球B运动到最低点时绳的拉力.分析:(1)释放小球瞬间,对小球进行受力分析,由库仑定律与力的合成与分解可以求出小球A的电荷量.(2)对小球受力分析,由牛顿第二定律可以求出小球的加速度.(3)由动能定理求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.解:(1)小球B刚释放瞬间,速度为零,沿绳子方向上,小球受到的合力为零,则mgcos60°=kqA代入数值,求得qA=5×10﹣6C;(2)小球所受合力方向与绳子垂直,由牛顿第二定律得:mgsinθ=ma,a=gsinθ=53(3)释放后小球B做圆周运动,两球的相对距离不变,库仑力不做功,从释放小球到小球到达最低点的过程中,由动能定理得:mg(L﹣Lcos60°)=12mv2﹣小球在最低点,由牛顿第二定律得:FT+kqAqB解得:FT=32mg=答:(1)小球A的带电荷量为5×10﹣6C;(2)释放瞬间小球B的加速度大小为53m/s2;(3)小球B运动到最低点时绳的拉力为1.5N.点评:释放小球瞬间,沿绳子方向小球受力平衡,小球所受合力沿与绳子垂直的方向.【解题方法点拨】1.库仑定律适用条件(1)库仑定律只适用于真空中的静止点电荷,但在要求不很精确的情况下,空气中的点电荷的相互作用也可以应用库仑定律.(2)当带电体间的距离远大于它们本身的尺寸时,可把带电体看做点电荷.但不能根据公式错误地推论:当r→0时,F→∞.其实在这样的条件下,两个带电体已经不能再看做点电荷了.(3)对于两个均匀带电绝缘球体,可将其视为电荷集中于球心的点电荷,r为两球心之间的距离.(4)对两个带电金属球,要考虑金属球表面电荷的重新分布.2.应用库仑定律需要注意的几个问题(1)库仑定律的适用条件是真空中的静止点电荷.点电荷是一种理想化模型,当带电体间的距离远远大于带电体的自身大小时,可以视其为点电荷而适用库仑定律,否则不能适用.(2)库仑定律的应用方法:库仑定律严格地说只适用于真空中,在要求不很精确的情况下,空气可近似当作真空来处理.注意库仑力是矢量,计算库仑力可以直接运用公式,将电荷量的绝对值代入公式,根据同种电荷相斥,异种电荷相吸来判断作用力F是引力还是斥力;也可将电荷量带正、负号一起运算,根据结果的正负,来判断作用力是引力还是斥力.(3)三个点电荷的平衡问题:要使三个自由电荷组成的系统处于平衡状态,每个电荷受到的两个库仑力必须大小相等,方向相反,也可以说另外两个点电荷在该电荷处的合场强应为零.3.分析带电体力学问题的方法与纯力学问题的分析方法一样,要学会把电学问题力学化.分析方法是:(1)确定研究对象.如果有几个带电体相互作用时,要依据题意,适当选取“整体法”或“隔离法”;(2)对研究对象进行受力分析,多了个电场力(F=kq1(3)列平衡方程(F合=0或Fx=0,Fy=0)或牛顿第二定律方程.9.库仑力作用下的受力平衡问题【知识点的认识】本考点旨在针对带电体在有库仑力存在时的平衡问题。注意这个考点下只针对点电荷之间的作用力,不含电场类问题。【命题方向】质量、电量分别为m1、m2、q1、q2的两球,用绝缘丝线悬于同一点,静止后它们恰好位于同一水平面上,细线与竖直方向夹角分别为α、β,如图所示则()A、若m1=m2,q1<q2,则α<βB、若m1=m2,q1<q2,则α>βC、若m1>m2,则α<β,与q1、q2是否相等无关D、若q1=q2,m1>m2,则α>β分析:对A、B球受力分析,根据共点力平衡和几何关系表示出电场力和重力的关系.根据电场力和重力的关系得出两球质量的关系.解答:设左边球为A,右边球为B,则对A、B球受力分析,根据共点力平衡和几何关系得:设T为绳的拉力,m1g=Tcosα,m2g=Tcosβ由于F1=F2,即Tsinα=Tsinβ若m1<m2.则有α>β;若m1>m2.则有α<β根据题意无法知道带电量q1、q2的关系。故选:C。点评:要比较两球质量关系,我们要通过电场力把两重力联系起来进行比较.【解题思路点拨】解这类题目就像解决共点力的平衡类题目一样,先对物体进行受力分析,然后进行力的合成与分解,列出平衡表达式,进而求出所需的物理量。10.三(多)个点电荷在一条直线上时的平衡问题【知识点的认识】本考点针对的是三个点电荷在一条直线上的平衡问题。有两种类型:一是三个点电荷都不固定;二是其中两个点电荷固定。【命题方向】一、三个点电荷都不固定如图所示,q1、q2、q3分别表示在一条直线上的三个点电荷,已知q1和q2之间的距离为l1,q2和q3之间的距离为l2,且每个电荷都处于平衡状态。(1)如q2为正电荷,则q1、q3分别为何种电荷?(2)q1、q2、q3三者电量的大小之比为多少?分析:(1)解决本题一定要把握“每个电荷都处于平衡状态”这一特点进行分析,已知q2为负电荷,可以利用假设法判断q1和q3的电性,如假设q1带正电,其它电荷是否平衡等,也可以利用“两同夹异,近小远大”(三个电荷处于平衡时两边电性相同和中间相反,中间电荷离电量小的近,离电量大的远)进行判断。(2)三个电荷处于同一直线上,每个电荷受两个库仑力作用处于平衡状态,据此列方程即可求解。解答:(1)假设q1带负电,要使q2平衡则q3也应带负电。如果q1带正电,要使q2平衡则q3也应带正电。但是q1、q3不能平衡,所以q1、q3都带负电荷。(2)由于三个电荷均处于平衡状态,由库仑定律建立如下平衡式:对q1:kq对q2:kq对q3:kq解得:q1:q2:q3=(l1+l答:(1)如q2为正电荷,则q1、q3都带负电荷。(2)q1、q2、q3三者电量的大小之比为(l1+l2l点评:本题考查了库仑定律在电荷平衡中的应用,对于三个电荷平衡可以利用“两同夹异,近小远大”的规律进行电性判断,本题的难点在于计算,学生列出方程容易,但是计算正确难。二、其中两个点电荷固定如图所示,两个固定的带正电的点电荷q1、q2,电荷量之比为1:4,相距为d,引入第三个点电荷q3,要使q3能处于平衡状态,对q3的位置、电性和电荷量的要求,以下叙述正确的是()A、q3在q1和q2连线之间距离q1为d3B、q3在q1和q2连线之间距离q1为d3C、q3在q1和q2连线之间距离q1为d3D、q3在q1和q2连线的延长线上,位于q1左侧d3分析:因为两个带正电的电荷固定,引入的电荷要处于平衡状态,知该电荷必须在两电荷之间,对于电性、电流均没有要求.根据平衡进行求解.解答:由题意知,电荷一定在两正电荷之间,根据平衡有:kq1qr12=kq2qr22,解得r1r2=12故选:C。点评:本题考查了库仑定律和共点力平衡,知道对第三个电荷的电量和电性无要求.【知识点的认识】1.如果三个物体要保持平衡,那么每一个物体都要在另两个物体的作用下保持平衡。2.三个带电物体仅在库仑力作用下的平衡问题的规律是“两大夹小,两同夹异,近小远大”。11.点电荷与均匀带电球体(球壳)周围的电场【知识点的认识】1.点电荷是最简单的场源电荷,一个电荷量为Q的点电荷,在与之相距r处的电场强度为E=k2.推导如下:如果以Q为中心作一个球面,则球面上各点的电场强度大小相等。Q为场源电荷电量。F=kQq3.方向:若Q是正电荷,Q和该点的连线指向该点;若Q是负电荷,Q和该点的连线值向Q。3.使用范围:仅使用于真空中点电荷产生的电场。4.点单荷电场的特点:根据上式可知,如果以电荷量为Q的点电荷为中心作一个球面,则球面上各点的电场强度大小相等。当Q为正电荷时,电场强度E的方向沿半径向外(图甲)﹔当Q为负电荷时,电场强度E的方向沿半径向内(图乙)。即点电荷的电场是以电荷为球心向四周发散或由四周指向球心的。5.带电球体(球壳)与点电荷等效:在一个比较大的带电体不能看作点电荷的情况下,当计算它的电场时,可以把它分成若干小块,只要每个小块足够小,就可以看成点电荷,然后用点电荷电场强度叠加的方法计算整个带电体的电场。可以证明,一个半径为R的均匀带电球体(或球壳)在球的外部产生的电场,与一个位于球心、电荷量相等的点电荷在同一点产生的电场相同(如下图),即E=k式中的r是球心到该点的距离(r>R),Q为整个球体所带的电荷量。【命题方向】一点电荷Q=2.0×10﹣8C,在距此点电荷30cm处,该电荷产生的电场的强度是多大?分析:知道点电荷的电荷量,知道离点电荷的距离,由点电荷的场强公式可以直接求得结果.解答:由点电荷的场强公式E=kQrE=kQr2=9.0×109所以电荷产生的电场的强度是2000N/C.点评:本题是点电荷的场强公式的直接应用,掌握住公式就很简单了.【解题思路点拨】1.公式E=kQr2又叫作2.一个均匀带电球体(或球壳)在球外某点产生的电场与一个位于球心,电荷量相字的点电荷在该点产生的电场相同。要注意只局限于球外。3.常见的错误之一是认为以点电荷为球心的球面上各处电场强度相等。错误的原因在于忽略了电场强度的矢量性。准确的说法是以点电荷为球心的球面上各处电场强度大小相等,方向不同。4.电场强度三个计算式的比较表达式比较E=E=kQE=公式意义电场强度定义式真空中点电荷的电场强度决定式匀强电场中E与U关系式适用条件一切电场①真空②点电荷匀强电场比较决定因素由电场本身决定,与q无关由场源电荷Q和场源电荷到该点的距离r共同决定由电场本身决定,d是场中两点间沿场强方向的距离相同点矢量,单位:1N/C=1V/m12.电场强度的叠加【知识点的认识】电场强度的叠加原理多个电荷在电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,这种关系叫电场强度的叠加.电场强度的叠加遵循平行四边形定则.在求解电场强度问题时,应分清所叙述的场强是合场强还是分场强,若求分场强,要注意选择适当的公式进行计算;若求合场强时,应先求出分场强,然后再根据平行四边形定则求解.【命题方向】图中a、b是两个点电荷,它们的电量分别为Q1、Q2,MN是ab连线的中垂线,P是中垂线上的一点.下列哪种情况能使P点场强方向指向MN的左侧?()A、Q1、Q2都是正电荷,且Q1<Q2B、Q1是正电荷,Q2是负电荷,且Q1>|Q2|C、Q1是负电荷,Q2是正电荷,且|Q1|<Q2D、Q1、Q2都是负电荷,且|Q1|>|Q2|分析:利用在该点正电荷所受电场力方向为电场强度方向来确定各自电场强度方向.然后两点电荷在同一点的场强是由各自电场强度矢量叠加而成的.解答:A、当两点电荷均为正电荷时,若电荷量相等,则它们在P点的电场强度方向沿MN背离N方向。当Q1<Q2时,则b点电荷在p点的电场强度比a点强,所以电场强度合成后,方向偏左。当Q1>Q2时,则b点电荷在p点的电场强度比a点弱,所以电场强度合成后,方向偏右。故A正确;B、当Q1是正电荷,Q2是负电荷时,b点电荷在p点的电场强度方向沿bP连线背离b点,而a点电荷在p点的电场强度方向沿aP连线指向b点,则合电场强度方向偏右。不论电量大小关系,仍偏右。故B错误;C、当Q1是负电荷,Q2是正电荷时,b点电荷在p点的电场强度方向沿bP连线指向b点,而a点电荷在p点的电场强度方向沿aP连线背离a点,则合电场强度方向偏左。不论它们的电量大小关系,仍偏左。故C正确;D、当Q1、Q2是负电荷时,b点电荷在p点的电场强度方向沿bP连线指向b点,而a点电荷在p点的电场强度方向沿aP连线指向a点,由于|Q1|>|Q2|,则合电场强度方向偏左。故D正确;故选:ACD。点评:正点电荷在某点的电场强度方向是这两点的连线且背离正电荷,而负点电荷在某点的电场强度方向是这两点的连线且指向负电荷.【解题思路点拨】电场强度叠加问题的本质就是矢量运算法则,先确定每一个电荷在该点单独产生的电场强度,再利用平行四边形定则或三角形定则求解合场强。13.电场强度与电场力的关系和计算【知识点的认识】根据电场强度的定义式E=FF=qE。【命题方向】如图,A、B、C三点在同一直线上,且AB=BC,在A处固定一电荷量为+Q的点电荷。当在C处放一电荷量为q的点电荷时,它所受到的电场力大小为F,移去C处电荷,在B处放电荷量为2q的点电荷,其所受电场力大小为()A、4FB、8FC、F4D、分析:首先确定电荷量为2q的点电荷在B处所受的电场力方向与F方向的关系,再根据库仑定律得到F与AB的关系,即可求出2q的点电荷所受电场力。解答:根据同种电荷相互排斥、异种电荷相互吸引,分析可知电荷量为2q的点电荷在B处所受的电场力方向与F方向相同;设AB=r,则有BC=r。则有:F=kQq故电荷量为2q的点电荷在B处所受电场力为:FB=kQ⋅2qr2=8F,故B故选:B。点评:本题关键是根据库仑定律研究两电荷在两点所受的电场力大小和方向关系,注意B、C两点的电场强度方向相同。【解题方法点拨】既可以利用E=Fq计算某一点的电场强度也可以利用它的变形F=14.电荷性质、电场力方向和电场强度方向的相互判断【知识点的认识】1.电场中某一点的电场强度方向与正电荷在该点的受力方向相同,与负电荷在该点的受力方向相反。2.知道电荷性质、电场强度方向、电场力的方向三者中的两个就可以推出第三个。【命题方向】如图是电场中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论