江西南康市南康中学2026届数学高二上期末经典模拟试题含解析_第1页
江西南康市南康中学2026届数学高二上期末经典模拟试题含解析_第2页
江西南康市南康中学2026届数学高二上期末经典模拟试题含解析_第3页
江西南康市南康中学2026届数学高二上期末经典模拟试题含解析_第4页
江西南康市南康中学2026届数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西南康市南康中学2026届数学高二上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,若,则xy的最小值是()A. B.C. D.2.设正方体的棱长为,则点到平面的距离是()A. B.C. D.3.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.4.在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列 B.若是等方差数列,则是等方差数列C.是等方差数列 D.若是等方差数列,则是等方差数列5.已知向量,,且,则实数等于()A.1 B.2C. D.6.已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4 B.3C.2 D.17.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-18.已知圆,则圆上的点到坐标原点的距离的最小值为()A.-1 B.C.+1 D.69.“”是“直线与直线垂直”的A.充分必要条件 B.充分非必要条件C.必要不充分条件 D.既不充分也不必要条件10.已知抛物线的焦点为F,过F作斜率为2的直线l与抛物线交于A,B两点,若弦的中点到抛物线准线的距离为3,则抛物线的方程为()A. B.C. D.11.已知数列满足,其前项和为,,.若数列的前项和为,则满足成立的的最小值为()A.10 B.11C.12 D.1312.下列直线中,与直线垂直的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy中,设军营所在平面区域为{(x,y)|x2+y2≤},河岸线所在直线方程为x+2y-4=0.假定将军从点P(,)处出发,只要到达军营所在区域即回到军营,当将军选择最短路程时,饮马点A的纵坐标为______.最短总路程为______14.已知抛物线的准线方程为,在抛物线C上存在A、B两点关于直线对称,设弦AB的中点为M,O为坐标原点,则的值为___________.15.__________16.在数列中,,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积18.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.19.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标20.(12分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.21.(12分)设或,(1)若时,p是q的什么条件?(2)若p是q的必要不充分条件,求a的取值范围22.(10分)平面直角坐标系xOy中,点,,点M满足.记M的轨迹为C.(1)说明C是什么曲线,并求C的方程;(2)已知经过的直线l与C交于A,B两点,若,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对使用基本不等式,这样得到关于的不等式,解出xy的最小值【详解】因为,,由基本不等式得:,所以,解得:,当且仅当,即,时,等号成立故选:C2、D【解析】建立空间直角坐标系,根据空间向量所学点到面的距离公式求解即可.【详解】建立如下图所示空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴.因为正方体的边长为4,所以,,,,,所以,,,设平面的法向量,所以,,即,设,所以,,即,设点到平面的距离为,所以,故选:D.3、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D4、B【解析】根据等方差数列的定义逐一进行判断即可【详解】选项A中,符合等差数列的定义,所以是等差数列,A正确;选项B中,不是常数,所以不是等方差数列,选项B错误;选项C中,,所以是等方差数列,C正确;选项D中,所以是等方差数列,D正确故选:B5、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C6、C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C7、A【解析】根据两直线垂直的充要条件知:,即可求的值.【详解】由两直线垂直,可知:,即.故选:A8、A【解析】先求出圆心和半径,求出圆心到坐标原点的距离,从而求出圆上的点到坐标原点的距离的最小值.【详解】变形为,故圆心为,半径为1,故圆心到原点的距离为,故圆上的点到坐标原点的距离最小值为.故选:A9、B【解析】先由两直线垂直求出的值,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线与直线垂直,则,即,解得或;因此由“”能推出“直线与直线垂直”,反之不能推出,所以“”是“直线与直线垂直”的充分非必要条件.故选B【点睛】本题主要考查命题充分不必要条件的判定,熟记充分条件与必要条件的概念,以及两直线垂直的判定条件即可,属于常考题型.10、B【解析】设出直线,并与抛物线联立,得到,再根据抛物线的定义建立等式即可求解.【详解】因为直线l的方程为,即,由消去y,得,设,则,又因为弦的中点到抛物线的准线的距离为3,所以,而,所以,故,解得,所以抛物线的方程为故选:B.11、A【解析】根据题意和对数的运算公式可证得为以2为首项,2为公比的等比数列,求出,进而得到,利用裂项相消法求得,再解不等式即可.【详解】由,又,所以数列是以2为首项,2为公比的等比数列,故,则,所以,由,得,即,有,又,所以,即n的最小值为10.故选:A12、C【解析】,,若,则,项,符合条件,故选二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】求出P(,)关于直线x+2y4=0对称点P'的坐标,再求出线段OP'与直线x+2y-4=0的交点A,再利用圆的几何性质可得结果.【详解】设P(,)关于直线x+2y4=0的对称点为P'(m,n),则解得因为从点P到军营总路程最短,所以A为线段OP'与直线x+2y4=0的交点,联立得y=(42y),解得y=.所以“将军饮马”的最短总路程为=,故答案为,.【点睛】本题主要考查对称问题以及圆的几何性质,属于中档题.解析几何中点对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.14、5【解析】先运用点差法得到,然后通过两点距离公式求出结果详解】解:抛物线的准线方程为,所以,解得,所以抛物线的方程为,设点,,,,的中点为,,则,,两式相减得,即,又因为,两点关于直线对称,所以,解得,可得,则,故答案为:515、【解析】先由题得到,再整体代入化简即得解.【详解】因为,所以,则故答案为【点睛】本题主要考查差角的正切公式,意在考查学生对该知识的理解掌握水平,属于基础题.16、##【解析】根据数列的递推公式,发现规律,即数列为周期数列,然后求出即可【详解】根据题意可得:,,,故数列为周期数列可得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由椭圆的性质求出,进而得出方程;(2)由,结合余弦定理求出,再由面积公式得出三角形的面积.【详解】解:(1),与轴垂直,,∴∴椭圆的方程为(2)由(1)知,∵,∴∴,∴的面积为【点睛】关键点睛:解决问题二的关键在于利用余弦定理结合完全平方和公式求出,进而得出面积.18、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.19、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.20、(1)证明见解析(2)【解析】(1)取的中点,连接,,可得四边形为平行四边形,从而可得,然后证明平面,从而可证明.(2)过作截面平面,分别交,于,,连接,作于,由所求几何体体积为从而可得答案.【小问1详解】如图,取的中点,连接,,因为,分别是,的中点.所以且又因为,,所以且,故四边形为平行四边形,所以.因为正三角形,是的中点,所以,又因为平面,所以,又,所以平面又,所以平面.【小问2详解】如图,过作截面平面,分别交,于,,连接,作于,因为平面平面,所以,结合直三棱柱的性质,则平面因为,,,所以.所以所求几何体体积为21、(1)充要条件;(2).【解析】(1)根据解一元二次不等式的方法,结合充分性、必要性的定义进行求解判断即可;(2)根据必要不充分条件的性质进行求解即可.【小问1详解】因为,所以,解得或,显然p是q的充要条件;【小问2详解】,当时,该不等式的解集为全体实数集,显然由,但不成立,因此p是q的充分不必要条件,不符合题意;当时,该不等式的解集为:,显然当时,不一定成立,因此p不是q的必要不充分条件,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论