版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省汾阳市汾阳中学2026届高二上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),问立夏日影长为()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸2.函数f(x)=的图象大致形状是()A. B.C. D.3.数列的一个通项公式为()A. B.C. D.4.已知圆与直线,则圆上到直线的距离为1的点的个数是()A.1 B.2C.3 D.45.过抛物线C:的准线上任意一点作抛物线的切线,切点为,若在轴上存在定点,使得恒成立,则点的坐标为()A. B.C. D.6.七巧板是一种古老的中国传统智力玩具,顾名思义,是由七块板组成的.这七块板可拼成许多图形(1600种以上),如图所示,某同学用七巧板拼成了一个“鸽子”形状,若从“鸽子”身上任取一点,则取自“鸽子头部”(图中阴影部分)的概率是()A. B.C. D.7.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.98.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.9.已知是抛物线上的一点,是抛物线的焦点,若以为始边,为终边的角,则等于()A. B.C. D.10.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.11.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.12.与向量平行,且经过点的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.14.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______15.设数列满足且,则________.数列的通项=________.16.已知平面,过空间一定点P作一直线l,使得直线l与平面,所成的角都是30°,则这样的直线l有______条三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.18.(12分)已知抛物线的焦点为F,直线l过点(1)若点F到直线l的距离为,求直线l的斜率;(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值19.(12分)已知数列,,,且,其中为常数(1)证明:;(2)是否存在,使得为等差数列?并说明理由20.(12分)已知椭圆的两焦点为、,P为椭圆上一点,且(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积21.(12分)已知椭圆:的左、右焦点分别为,,点E在椭圆C上,且,,.(1)求椭圆C的方程:(2)直线l过点,交椭圆于点A,B,且点P恰为线段AB的中点,求直线l的方程.22.(10分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】结合等差数列知识求得正确答案.【详解】设冬至日影长,公差为,则,所以立夏日影长丈,即四尺五寸.故选:D2、B【解析】利用函数的奇偶性排除选项A,C,然后利用特殊值判断即可【详解】解:由题得函数的定义域为,关于原点对称.所以函数是奇函数,排除选项A,C.当时,,排除选项D,故选:B3、A【解析】根据规律,总结通项公式,即可得答案.【详解】根据规律可知数列的前三项为,所以该数列一个通项公式为故选:A4、B【解析】根据圆心到直线的距离即可判断.【详解】由得,则圆的圆心为,半径,由,则圆心到直线的距离,∵,∴在圆上到直线距离为1的点有两个.故选:B.5、D【解析】设切点,点,联立直线的方程和抛物线C的准线方程可得,将问题转化为对任意点恒成立,可得,解出,从而求出答案【详解】设切点,点由题意,抛物线C的准线,且由,得,则直线的方程为,即,联立令,得由题意知,对任意点恒成立,也就是对任意点恒成立因为,,则,即对任意实数恒成立,所以,即,所以,故选:D【点睛】一般表示抛物线的切线方程时可将抛物线方程转化为函数解析式,可利用导数的几何意义求解切线斜率,再代入计算.6、C【解析】设正方形边长为1,求出七巧板中“4”这一块的面积,然后计算概率【详解】设正方形边长为1,由正方形中七巧板形状知“4”这一块是正方形,边长为,面积为,所以概率为故选:C7、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B8、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).9、D【解析】设点,取,可得,求出的值,利用抛物线的定义可求得的值.【详解】设点,其中,则,,取,则,可得,因为,可得,解得,则,因此,.故选:D.10、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目11、D【解析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D12、A【解析】利用点斜式求得直线方程.【详解】依题意可知,所求直线的斜率为,所以所求直线方程为,即.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、(1)证明见解析;(2)①;②.【解析】(1)由可证得结论成立;(2)①设点、,利用点差法可求得直线的斜率,利用点斜式可得出所求直线的方程;②将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,利用平面向量数量积的坐标运算可得出关于的等式,可求出的值,即可得出椭圆的方程.【详解】(1),,因此,;(2)①由(1)知,椭圆的方程为,即,当在椭圆的内部时,,可得.设点、,则,所以,,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;②联立,消去可得.,由韦达定理可得,,又,而,,,解得合乎题意,故,因此,椭圆的方程为.14、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:15、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.16、4【解析】设平面,在平面内作于点O,在平面内过点O作,设OM是的角平分线,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,直线l与平面且与平面,所成的角都是30°,在的补角一侧也存在2条满足条件的直线l,由此可得答案.【详解】解:设平面,在平面内作于点O,在平面内过点O作,因为平面,所以,设OM是的角平分线,则,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,此时直线l与平面且与平面,所成的角都是30°,同理,在的补角一侧也存在2条满足条件的直线l,所以这样的直线l有4条,故答案为:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)略(2)【解析】(1)题中条件,而要证明的是数列是等差数列,因此需将条件中所给的的递推公式转化为的递推公式:,从而,,进而得证;(2)由(1)可得,,因此数列的通项公式可以看成一个等差数列与等比数列的乘积,故可考虑采用错位相减法求其前项和,即有:①,①得:②,②-①得.试题解析:(1)∵,,又∵,∴,,∴则是为首项为公差的等差数列;由(1)得,∴,∴①,①得:②,②-①得.考点:1.数列的通项公式;2.错位相减法求数列的和.18、(1)(2)证明见详解.【解析】(1)设出直线方程,根据点到直线的距离公式,即可求得直线;(2)设出直线方程,联立抛物线方程,根据韦达定理,利用直线垂直,从而得到的斜率关系,即可证明.【详解】(1)由条件知直线l的斜率存在,设为,则直线l的方程为:,即从而焦点到直线l的距离为,平方化简得:,故直线斜率为:.(2)证明:设直线AB的方程为,联立抛物线方程,消元得:设,,线段AB的中点为,故因为,将M点坐标代入后整理得:即可得:故为定值.即证.【点睛】本题考查抛物线中的定值问题,涉及直线方程的求解,韦达定理,属综合基础题.19、(1)证明见解析(2)存在;理由见解析【解析】(1)由得两式相减可得答案;(2)利用得,可得,是首项为1,公差为4的等差数列,是首项为3,公差为4的等差数列,因此存在【小问1详解】由题设,,,两式相减得,,由于,所以【小问2详解】由题设,,,可得,由(1)知,.令,解得,故,由此可得,是首项为1,公差为4的等差数列,;又,同理,是首项为3,公差为4的等差数列,所以,所以.因此存在,使得为等差数列20、(1);(2).【解析】(1)由题可得,根据椭圆的定义,求得,进而求得的值,即可求解;(2)由题可得直线方程为,联立椭圆方程可得点P,利用三角形的面积公式,即求.【小问1详解】设椭圆的标准方程为,焦距为,由题可得,,所以,可得,即,则,所以椭圆的标准方程为【小问2详解】设点坐标为,,,∵,∴所在的直线方程为,则解方程组,可得,∴.21、(1)(2)【解析】(1)根据椭圆的定义可求出,由结合勾股定理可求出,最后根据的关系求出,即可求出椭圆方程;(2)分直线的斜率存在或不存在两种情况讨论,当直线斜率存在时,设出直线方程与椭圆联立,利用中点的关系求出即可.【小问1详解】∵点E在椭圆C上,∴,即.在中,,∴椭圆的半焦距.∵,∴椭圆的方程为.【小问2详解】设,,若直线的斜率不存在,显然不符合题意.从而可设过点的直线的方程为,将直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年贵州农业职业学院单招综合素质笔试备考试题附答案详解
- 2026年广东岭南职业技术学院单招综合素质笔试备考题库附答案详解
- 2026年惠州工程职业学院单招综合素质考试参考题库附答案详解
- 2026年鹤岗师范高等专科学校单招职业技能考试模拟试题附答案详解
- 安全培训及考核合格文件课件
- 安全培训及施工技术课件
- 2026年东营科技职业学院单招综合素质笔试备考题库附答案详解
- 2026年黄山职业技术学院单招综合素质笔试备考试题附答案详解
- 2026年山东城市建设职业学院单招综合素质笔试备考试题附答案详解
- 2026年山西华澳商贸职业学院单招职业技能考试参考题库附答案详解
- 制氧厂安全培训知识课件
- 高血压病人护理图文课件
- 2025年政策导向解读化工行业政策扶持与市场前景分析方案
- 反诈宣传app课件
- 贵州搏罗脱硫石膏加工项目(一期)环评报告
- 部队日常养成课件
- DBJT15-159-2019 建筑废弃物再生集料应用技术规范
- 黄杏元《地理信息系统概论》考研考点解析与备考指南
- 2025年煤矿一通三防〞安全管理知识题库及答案
- 电机验收管理办法
- 《建筑速写轻松学》课件 第二章 斜一点透视
评论
0/150
提交评论