2026届重庆市江津中学、合川中学等七校高高二数学第一学期期末综合测试试题含解析_第1页
2026届重庆市江津中学、合川中学等七校高高二数学第一学期期末综合测试试题含解析_第2页
2026届重庆市江津中学、合川中学等七校高高二数学第一学期期末综合测试试题含解析_第3页
2026届重庆市江津中学、合川中学等七校高高二数学第一学期期末综合测试试题含解析_第4页
2026届重庆市江津中学、合川中学等七校高高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届重庆市江津中学、合川中学等七校高高二数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A. B.C. D.2.直线且的倾斜角为()A. B.C. D.3.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.4.函数的最大值为()A.32 B.27C.16 D.405.下列关于斜二测画法所得直观图的说法中正确的有()①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③菱形的直观图是菱形;④正方形的直观图是正方形.A.① B.①②C.③④ D.①②③④6.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),问立夏日影长为()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸7.方程表示的曲线经过的一点是()A. B.C. D.8.函数单调减区间是()A. B.C.和 D.9.焦点为的抛物线标准方程是()A. B.C. D.10.是等差数列,,,的第()项A.98 B.99C.100 D.10111.在中,内角的对边分别为,若,则角为A. B.C. D.12.已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有()A.0个 B.1个C.2个 D.3个二、填空题:本题共4小题,每小题5分,共20分。13.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______14.记为等比数列的前n项和,若,公比,则______15.已知椭圆,A,B是椭圆C上的两个不同的点,设,若,则直线AB的方程为______16.已知函数,,则曲线在处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公比为正数的等比数列,且,.(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)已知正项等差数列满足,(1)求数列的通项公式;(2)设,求数列的前项和19.(12分)圆心为的圆经过点,,且圆心在上,(1)求圆的标准方程;(2)过点作直线交圆于且,求直线的方程.20.(12分)已知椭圆,四点中,恰有三点在椭圆上(1)求椭圆的方程;(2)设直线不经过点,且与椭圆相交于不同的两点.若直线与直线的斜率之和为,证明:直线过一定点,并求此定点坐标21.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由22.(10分)已知函数,为的导函数(1)求的定义域和导函数;(2)当时,求函数的单调区间;(3)若对,都有成立,且存在,使成立,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设出点,的坐标,并表示出两个斜率、,把代数式转化成与点的坐标相关的代数式,再与椭圆有公共点解决即可.【详解】椭圆中:,设则,则,,令,则它对应直线由整理得由判别式解得即,则的最小值为故选:A2、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.3、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.4、A【解析】利用导数即可求解.【详解】因为,所以当时,;当时,.所以函数在上单调递增;在上单调递增,,因此,的最大值为.故选:A5、B【解析】根据斜二侧直观图的画法法则,直接判断①②③④的正确性,即可推出结论【详解】由斜二测画法规则知:三角形的直观图仍然是三角形,所以①正确;根据平行性不变知,平行四边形的直观图还是平行四边形,所以②正确;根据两轴的夹角为45°或135°知,菱形的直观图不再是菱形,所以③错误;根据平行于x轴的长度不变,平行于y轴的长度减半知,正方形的直观图不再是正方形,所以④错误.故选:B.6、D【解析】结合等差数列知识求得正确答案.【详解】设冬至日影长,公差为,则,所以立夏日影长丈,即四尺五寸.故选:D7、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C8、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B9、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.10、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C11、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.12、C【解析】由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.【详解】解:因为椭圆的图像关于原点对称,对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,即函数图象能等分该椭圆面积的函数个数有2个,故选C.【点睛】本题考查了椭圆的几何性质、函数的奇偶性及函数的对称性,重点考查了函数的性质,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:14、4【解析】根据给定条件列式求出数列的首项即可计算作答.【详解】依题意,,解得,所以.故答案为:415、【解析】由已知可得为的中点,再由点差法求所在直线的斜率,即可求得直线的方程【详解】由,可得为的中点,且在椭圆内,设,,,,则,,,则,即所在直线的斜率为直线的方程为,即故答案为:16、【解析】根据导数的几何意义求得在点处的切线方程.【详解】由,求导,知,又,则函数在点处的切线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意,通过解方程求出公比,即可求解;(2)根据题意,求出,结合组合法求和,即可求解.小问1详解】根据题意,设公比为,且,∵,,∴,解得或(舍),∴.【小问2详解】根据题意,得,故,因此.18、(1);(2).【解析】(1)设数首项为,公差为,由,,列出方程组,求得,,即可求出数列的通项公式;(2),利用列项相消求和法即可得出答案.【详解】(1)设数首项为,公差为,由题得.解得,,(负值舍去)所以;(2)由(1)得则.19、(1);(2)或.【解析】(1)求出线段的垂直平分线方程,求出此直线与已知直线的交点坐标即为圆心坐标,再求得半径后可得圆的标准方程;(2)检验直线斜率不存在时是否满足题意,在斜率存在时设方程为,求得圆心到直线的距离,由勾股定理得弦长,由弦长为8得参数,得直线方程【详解】(1)由已知,中点坐标为,垂直平分线方程为则由解得,所以圆心,因此半径所以圆的标准方程(2)由可得圆心到直线的距离当直线斜率不存在时,其方程为,当直线斜率存在时,设其方程为,则,解得,此时其方程为,所以直线方程为或.【点睛】方法点睛:本题考查求圆的标准方程,考查直线与圆相交弦长.求弦长方法是几何法:即求出圆心到弦所在直线距离,由勾股定理求得弦长.求直线方程时注意检验直线斜率不存在的情形20、(1)(2)证明见解析,定点【解析】(1)先判断出在椭圆上,再代入求椭圆方程;(2)假设斜率存在,设出直线,利用斜率之和为,求出之间的关系,即可求出定点,再说明斜率不存在时,直线仍过该点即可.【小问1详解】由对称性同时在椭圆上或同时不在椭圆上,从而在椭圆上,因此不在椭圆上,故在椭圆上,将,代入椭圆的方程,解得,所以椭圆的方程为【小问2详解】当直线斜率存在时,令方程为,由得所以得方程为,过定点当直线斜率不存在时,令方程为,由,即解得此时直线方程为,也过点综上,直线过定点.【点睛】本题关键点在于先假设斜率存在,设出直线,利用题目所给条件得到之间的关系,即可求出定点,再说明斜率不存在时,直线仍过该点即可,属于定点问题的常见解法,注意积累掌握.21、(1)证明见解析(2)能为平行四边形;斜率为4-或4+【解析】(1)设两点坐标,由点差法证明(2)求出两点坐标,由平行四边形的几何性质判断【小问1详解】设的斜率为,,两式相减可得,即故【小问2详解】由(1)得的直线为,直线方程为联立,解得联立解得若四边形OAPB为平行四边形,则对角线互相平分为中点,解得,经检验,均符合题意故四边形OAPB能为平行四边形,此时斜率为4-或4+22、(1),(2)在单减,也单减,无增区间(3)【解析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对,都有成立,即,即,令,,只要即可,利用导数求出函数的最小值即可求出的范围,,,求出函数的值域,根据存在,使成立,则0在函数的值域中,从而可得出的范围,即可得解.【小问1详解】解:的定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论