浙江省金华十校2026届高一上数学期末经典试题含解析_第1页
浙江省金华十校2026届高一上数学期末经典试题含解析_第2页
浙江省金华十校2026届高一上数学期末经典试题含解析_第3页
浙江省金华十校2026届高一上数学期末经典试题含解析_第4页
浙江省金华十校2026届高一上数学期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华十校2026届高一上数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.2.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.函数y=log2的定义域A.(,3) B.(,+∞)C.(,3) D.[,3]4.设集合,则集合的元素个数为()A.0 B.1C.2 D.35.设集合,,,则()A. B.C. D.6.函数的最小值为()A. B.C.0 D.7.已知函数,则的最大值为()A. B.C. D.8.已知,则的最小值为()A. B.2C. D.49.函数的零点个数是A.0 B.1C.2 D.310.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积是()A.12512πC.1256π二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若其定义域内不存在实数,使得,则的取值范围是______12.已知函数,则_________13.已知表示不超过实数的最大整数,如,,为取整函数,是函数的零点,则__________14.已知任何一个正实数都可以表示成,则的取值范围是________________;的位数是________________.(参考数据)15.如图,在正方体中,、分别是、上靠近点的三等分点,则异面直线与所成角的大小是______.16.已知函数的值域为,则实数的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,若集合,.(1)若,求,;(2)若,求实数的取值范围.18.2021年8月,国务院教育督导委员会办公室印发《关于组织责任督学进行“五项管理”督导的通知》,通知指出,加强中小学生作业、睡眠、手机、读物、体质管理(简称“五项管理”),是深入推进学生健康成长的重要举措.宿州市要对全市中小学生“体能达标”情况进行摸底,采用普查与抽样相结合的方式进行.现从某样本校中随机抽取20名学生参加体能测试,将这20名学生随机分为甲、乙两组,其中甲、乙两组学生人数之比为3:2,测试后,两组各自的成绩统计如下:甲组学生的平均成绩为75分,方差为16;乙组学生的平均成绩为80分,方差为25(1)估计该样本校学生体能测试的平均成绩;(2)求这20名学生测试成绩的标准差.(结果保留整数)19.(1)计算:()0.5+(-3)-1÷0.75-2-;(2)设0<a<1,解关于x的不等式.20.若两个函数和对任意,都有,则称函数和在上是疏远的(1)已知命题“函数和在上是疏远的”,试判断该命题的真假.若该命题为真命题,请予以证明;若为假命题,请举反例;(2)若函数和在上是疏远的,求整数a的取值范围21.已知集合,(1)当时,求;(2)若,求a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2、A【解析】根据充分必要条件的定义判断【详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A3、A【解析】由真数大于0,求解对分式不等式得答案;【详解】函数y=log2的定义域需满足故选A.【点睛】】本题考查函数的定义域及其求法,考查分式不等式的解法,是中档题4、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的运算即可得到结果.【详解】集合,所以.故选:B.5、D【解析】根据交集、补集的定义计算可得;【详解】解:集合,,,则故选:D6、C【解析】利用对数函数单调性得出函数在时取得最小值【详解】,因为是增函数,因此当时,,,当时,,,而时,,所以时,故选:C7、D【解析】令,可得出,令,证明出函数在上为减函数,在上为增函数,由此可求得函数在区间上的最大值,即为所求.【详解】令,则,则,令,下面证明函数在上为减函数,在上为增函数,任取、且,则,,则,,,,所以,函数在区间上为减函数,同理可证函数在区间上为增函数,,,.因此,函数的最大值为.故选:D.【点睛】方法点睛:利用函数的单调性求函数最值的基本步骤如下:(1)判断或证明函数在区间上的单调性;(2)利用函数的单调性求得函数在区间上的最值.8、C【解析】根据给定条件利用均值不等式直接计算作答.【详解】因为,则,当且仅当,即时取“=”,所以的最小值为.故选:C9、C【解析】将原问题转化为函数交点个数的问题即可确定函数的零点个数.【详解】函数的零点个数即函数与函数交点的个数,绘制函数图象如图所示,观察可得交点个数为2,则函数的零点个数是2.本题选择C选项.【点睛】本题主要考查函数零点的定义,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.10、C【解析】由矩形的对角线互相平分且相等即球心到四个顶点的距离相等推出球心为AC的中点,即可求出球的半径,代入体积公式即可得解.【详解】因为矩形对角线互相平分且相等,根据外接球性质易知外接球球心到四个顶点的距离相等,所以球心在对角线AC上,且球的半径为AC长度的一半,即r=12AC=故选:C【点睛】本题考查球与几何体的切、接问题,二面角的概念,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按的取值范围分类讨论.【详解】当时,定义域,,满足要求;当时,定义域,取,,时,,不满足要求;当时,定义域,,,满足要求;当时,定义域,取,,时,,不满足要求;综上:故答案为:【点睛】关键点睛:由参数变化引起的分类讨论,可根据题设按参数在不同区间,对应函数的变化,找到参数的取值范围.12、1【解析】根据分段函数的定义即可求解.【详解】解:因为函数,所以,所以,故答案为:1.13、2【解析】由于,所以,故.【点睛】本题主要考查对新定义概念的理解,考查利用二分法判断函数零点的大概位置.首先研究函数,令无法求解出对应的零点,考虑用二分法来判断,即计算,则零点在区间上.再结合取整函数的定义,可求出的值.14、①.②.【解析】根据对数函数的单调性及对数运算、对数式指数式的转化即可求解.【详解】因为,所以,由,故知,共有31位.故答案为:;3115、【解析】连接,可得出,证明出四边形为平行四边形,可得,可得出异面直线与所成角为或其补角,分析的形状,即可得出的大小,即可得出答案.【详解】连接、、,,,在正方体中,,,,所以,四边形为平行四边形,,所以,异面直线与所成的角为.易知为等边三角形,.故答案为:.【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.16、【解析】将题意等价于的值域包含,讨论和结合化简即可.【详解】解:要使函数的值域为则的值域包含①当即时,值域为包含,故符合条件②当时综上,实数的取值范围是故答案为:【点睛】一元二次不等式常考题型:(1)一元二次不等式在上恒成立问题:解决此类问题常利用一元二次不等式在上恒成立的条件,注意如果不等式恒成立,不要忽略时的情况.(2)在给定区间上的恒成立问题求解方法:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)求出集合,直接进行补集和并集运算即可求解;(2)由题意可得:,列出满足的不等关系即可求解.【详解】(1)(2),18、(1)77(2)【解析】(1)由已知可得甲、乙两组学生的人数分别为12、8,求得总分进而可得平均成绩.(2)方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,.根据方差公式计算可得,.计算求得20人的方差,进而得出标准差.方法二:直接使用权重公式计算即可得出结果.【小问1详解】由题知,甲、乙两组学生的人数分别为12、8,则这20名学生测试成绩的平均数,故可估计该样本校学生体能测试的平均成绩为77【小问2详解】方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,由甲组学生的测试成绩的方差,得由乙组学生的测试成绩的方差,得故这20名学生的测试成绩的方差所以(方法二)直接使用权重公式所以.19、(1)0;(2){x|x>1}【解析】(1)根据指数幂的运算性质,化简求值;(2)利用指数函数的单调性,即可求解不等式.【详解】(1)原式(2)因为0<a<1,所以y=ax在(-∞,+∞)上为减函数,因为,所以2x2-3x+2<2x2+2x-3,解得x>1.故x的解集为{x|x>1}.20、(1)该命题为假命题,反例为:当时,.(2).【解析】(1)利用“疏远函数”的定义直接判断即可,以或举例即可;(2)由函数的定义域可确定实数,构造函数,可证当时,恒成立,即函数和在上是疏远的【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论