版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届苏州实验中学数学高二上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④2.已知点分别是椭圆的左、右焦点,点P在此椭圆上,,则的面积等于A. B.C. D.3.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A B.C. D.4.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B.C. D.5.已知向量,,若,则()A.1 B.C. D.26.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形7.设拋物线的焦点为F,准线为l,P为拋物线上一点,,A为垂足.如果直线AF的斜率是,那么()A B.C.16 D.88.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.9.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.5010.若数列1,a,b,c,9是等比数列,则实数b的值为()A.5 B.C.3 D.3或11.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.12.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y(单位:千亿元)之间一组数据如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的进出口总额x,y满足线性相关关系,则______;若计划2022年出口总额达到5千亿元,预计该年进口总额为______千亿元14.函数y=x3+ax2+bx+a2在x=1处有极值10,则a=________.15.从甲、乙、丙、丁4位同学中,选出2位同学分别担任正、副班长的选法数可以用表示为____________.16.若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)令,求函数的零点;(2)令,求函数的最小值.18.(12分)已知数列是等差数列,其前项和为,且,.(1)求;(2)记数列的前项和为,求当取得最小值时的的值.19.(12分)已知圆经过,且圆心C在直线上(1)求圆的标准方程;(2)若直线:与圆存在公共点,求实数的取值范围20.(12分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由21.(12分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.22.(10分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B.(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B2、B【解析】根据椭圆标准方程,可得,结合定义及余弦定理可求得值,由及三角形面积公式即可求解.【详解】椭圆则,所以,则由余弦定理可知代入化简可得,则,故选:B.【点睛】本题考查了椭圆的标准方程及几何性质的简单应用,正弦定理与余弦定理的简单应用,三角形面积公式的用法,属于基础题.3、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以在单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.4、C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.考点:椭圆的简单几何性质.5、B【解析】由向量平行,先求出的值,再由模长公式求解模长.【详解】由,则,即则,所以则故选:B6、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.7、D【解析】由题可得方程,进而可得点坐标及点坐标,利用抛物线定义即求【详解】∵抛物线方程为,∴焦点F(2,0),准线l方程为x=−2,∵直线AF的斜率为,直线AF的方程为,由,可得,∵PA⊥l,A为垂足,∴P点纵坐标为,代入抛物线方程,得P点坐标为,∴.故选:D.8、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D9、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A10、C【解析】根据等比数列的定义,利用等比数列的通项公式求解【详解】解:设该等比数列公比为q,∵数列1,a,b,c,9是等比数列,∴,,∴,故,解得,∴故选:C11、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.12、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.1.6;②.3.65.【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.6514、4【解析】∵y′=3x2+2ax+b,∴或当a=-3,b=3时,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=415、【解析】由题意知:从4为同学中选出2位进行排列,即可写出表示方式.【详解】1、从4位同学选出2位同学,2、把所选出的2位同学任意安排为正、副班长,∴选法数为.故答案为:.16、【解析】由于,关于轴对称,故由题设知C经过,两点,C不经过点,然后求出a,b,即可得到椭圆的方程.【详解】解:由于,关于轴对称,故由题设知经过,两点,所以.又由知,不经过点,所以点在上,所以.因此,故方程为.故答案为:.【点睛】求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出,;若焦点位置不明确,则需要分焦点在轴上和轴上两种情况讨论,也可设椭圆的方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解析】(1)函数零点的个数,就是方程的解的个数,显然是方程的一个解,再对a分类讨论,即得函数的零点;(2)令,可得,得,再对二次函数的对称轴分三种情况讨论得解.【详解】(1)由,可知函数零点的个数,就是方程的解的个数,显然是方程的一个解;当时,方程可化为,得,由函数单调递增,且值域为,有下列几种情况如下:①当时,方程没有根,可得函数只有一个零点;②当时,方程的根为,可得函数只有一个零点;③当且时,方程的根为,由,可得函数有两个零点和;由上知,当或时,函数的零点为;当且时,数的零点为和.(2)令,可得,由,,可得,二次函数的对称轴为,①当时,即,此时函数的最小值为;②当时,即,此时函数的最小值为;③当,即,此时函数最小值为.【点睛】本题主要考查函数的零点问题,考查指数对数函数的图象,考查函数的最值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)(2)10或11【解析】(1)利用通项公式以及求和公式列出方程组得出;(2)先求出数列通项公式,再根据得出取得最小值时的的值.【小问1详解】设等差数列的公差为,则由得解得所以.【小问2详解】因为,所以,则.令,解得,由于,故或,故当前项和取得最小值时的值为10或11.19、(1)(2)【解析】(1)因为圆心在直线上,可设圆心坐标为,利用圆心到圆上两点的距离相等列出等式求解即可.(2)直线与圆存在公共点,即圆心到直线的距离小于等于半径,列出不等关系求解即可.【小问1详解】解:因为圆心在直线上,所以设圆心坐标为,因为圆经过,,所以,即:,解方程得,圆心坐标为,半径为,圆的标准方程为:【小问2详解】圆心到直线的距离且直线与圆有公共点即20、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根与系数关系,结合平面向量数量积的坐标表示公式进行求解判断即可.【小问1详解】设圆E的圆心为,半径为r,则,,所以由双曲线定义可知,E的轨迹是以M,N为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E的轨迹方程为,;【小问2详解】设,,直线l的方程为由得,且,故又,所以又,,所以,即.又故或若,则直线l的方程为,过点,与题意矛盾,所以,故,所以直线l的方程为,过点【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.21、(1)(2)【解析】(1)根据题意可得,,再由,即可求解.(2)设直线的方程为,将直线与椭圆方程联立求得关于的方程,利用弦长公式求出,再利用点到直线的距离求出点到直线的距离,利用三角形的面积公式配方即可求解.【详解】解(1)由题意得:,,∴,∴∴椭圆的方程为(2)∵直线的斜率为,∴可设直线的方程为与椭圆的方程联立可得:①设两点的坐标为,由韦达定理得:,∴点到直线的距离,∴由①知:,,令,则,∴令,则在上的最大值为∴的最大值为综上所述:三角形面积的最大值2.【点睛】本题考查了根据求椭圆的标准方程,考查了直线与椭圆额位置关系中三角形面积问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国建筑设计研究院有限公司西分公司负责人招聘备考题库及答案详解一套
- 2026年公安部第一研究所公开招聘预报名公安部第一研究所备考题库及一套答案详解
- 2026年兴业银行广州分行社会招聘备考题库及一套答案详解
- 2026年伊犁州公安局面向社会公开招聘警务辅助人员备考题库附答案详解
- 2026年临沧市临翔区司法局公开招聘司法协理员备考题库及参考答案详解
- 2026年中国科学院新疆天文台财务处招聘备考题库附答案详解
- 2026年临沧市临翔区司法局公开招聘司法协理员备考题库及答案详解1套
- 2026年大通湖区法院公开招聘聘用制司法警务辅助人员备考题库及完整答案详解1套
- 2026年中国科学院南京土壤研究所“土壤质量”研究团队非在编项目聘用人员招聘备考题库参考答案详解
- 呕吐护理的基本原则
- 四川省成都市武侯区西川中学2024-2025学年八上期末数学试卷(解析版)
- 2026年《必背60题》抖音本地生活BD经理高频面试题包含详细解答
- 土方回填工程质量控制施工方案
- 渤海银行公司业务部客户经理岗位技能竞赛题库含答案
- 2025年海洋平台维护五年优化报告
- 聚合码商户协议书
- 2026贵州大数据产业集团有限公司第一次社会招聘考试题库新版
- 珠海高新区2025年下半年公开招聘公办中学事业编制教师备考题库及答案详解一套
- 2025年贵港市利恒投资集团有限公司公开招聘工作人员的备考题库及参考答案详解
- 辽宁省沈阳市皇姑区2024-2025学年七年级上学期期末道德与法治试卷
- 辽宁省盘锦市兴隆台区2024-2025学年九年级上学期期末数学试题
评论
0/150
提交评论