版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市迎泽区五中2026届高一上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数在上单调递减,则的值为A. B.C.或 D.2.=(
)A. B.C. D.3.已知,则()A.-4 B.4C. D.4.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知,,,则a,b,c的大小关系为()A. B.C. D.6.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.7.已知函数,若对任意,总存在,使得不等式都恒成立,则实数的取值范围为()A. B.C. D.8.集合用列举法表示是()A. B.C. D.9.函数的零点所在区间为:()A. B.C. D.10.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数y=xα的图象经过点2,8,那么12.函数在[1,3]上的值域为[1,3],则实数a的值是___________.13.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________14.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.15.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________16.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某乡镇为了进行美丽乡村建设,规划在长为10千米的河流的一侧建一条观光带,观光带的前一部分为曲线段,设曲线段为函数,(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段,如图所示.(1)求曲线段对应的函数的解析式;(2)若计划在河流和观光带之间新建一个如图所示的矩形绿化带,绿化带由线段构成,其中点在线段上.当长为多少时,绿化带的总长度最长?18.已知函数(,且).(1)判断函数的奇偶性,并予以证明;(2)求使的x的取值范围.19.某渔业公司年初用98万元购进一艘渔船,用于捕捞.已知该船使用中所需的各种费用e(单位:万元)与使用时间n(,单位:年)之间的函数关系式为,该船每年捕捞的总收入为50万元(1)该渔船捕捞几年开始盈利(即总收入减去成本及所有使用费用为正值)?(2)若当年平均盈利额达到最大值时,渔船以30万元卖出,则该船为渔业公司带来的收益是多少万元?20.△ABC中,A(3,-1),AB边上的中线CM所在直线方程为:6x+10y-59=0,∠B的平分线方程BT为:x-4y+10=0,求直线BC的方程.21.函数(,)的图象关于直线对称,且图象上相邻两个最高点的距离为(1)求函数的解析式以及它的单调递增区间;(2)是否存在实数,满足不等式?若存在,求出的取值范围;若不存在,请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由函数为幂函数得,即,解得或.当时,,符合题意.当时,,不和题意综上.选A2、A【解析】由题意可得:.本题选择A选项3、C【解析】已知,可得,根据两角差的正切公式计算即可得出结果.【详解】已知,则,.故选:C.4、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.5、D【解析】利用指数函数和对数函数的单调性求解.【详解】因为,,,所以,故选:D6、B【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决7、D【解析】探讨函数性质,求出最大值,再借助关于a函数单调性列式计算作答.【详解】依题意,,则是上的奇函数,当时,,在上单调递增,在上单调递减,则,由奇函数性质知,函数在上的最大值是,依题意,存在,,令,显然是一次型函数,因此,或,解得或,所以实数的取值范围为.故选:D8、D【解析】解不等式,结合列举法可得结果.【详解】.故选:D9、C【解析】利用函数的单调性及零点存在定理即得.【详解】因为,所以函数单调递减,,∴函数的零点所在区间为.故选:C.10、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】根据幂函数y=xα的图象经过点2,8,由2【详解】因为幂函数y=xα的图象经过点所以2α解得α=3,故答案:312、【解析】分类讨论,根据单调性求值域后建立方程可求解.【详解】若,在上单调递减,则,不符合题意;若,在上单调递增,则,当值域为时,可知,解得.故答案为:13、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用14、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.15、3【解析】设铜球的半径为,则,得,故答案为.16、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)当OM长为1千米时,绿化带的总长度最长.【解析】(1)由题意首先求得a,b,c的值,然后分段确定函数的解析式即可;(2)设,由题意得到关于t的函数,结合二次函数的性质确定当长为多少时,绿化带的总长度最长即可.【详解】(1)因为曲线段OAB过点O,且最高点为,,解得.所以,当时,,因为后一部分为线段BC,,当时,,综上,.(2)设,则,由,得,所以点,所以,绿化带的总长度:.所以当时.【点睛】本题考查分段函数求函数值,要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念.18、(1)是奇函数,证明见解析;(2).【解析】(1)先根据对数函数的定义得函数的定义域关于原点对称,再根据函数的奇偶性定义判断即可;(2)由已知条件得,再分与两种情况讨论,结合对数函数的单调性列出不等式组,求出x的取值范围即可.【详解】(1)函数是奇函数.证明:要使函数的解析式有意义,需的解析式都有意义,即解得,所以函数的定义域是,所以函数的定义域关于原点对称.因为所以函数是奇函数.(2)若,即.当时,有解得;当时,有解得,综上所述,当时,x的取值范围是,当时,x的取值范围是.【点睛】该题考查的是有关函数的问题,涉及到的知识点有本题函数的奇偶性的判断与证明、对数函数的单调性、根据单调性解不等式,不用对参数进行讨论,属于中档题目.19、(1)该渔船捕捞3年开始盈利;(2)万元.【解析】(1)由题设可得,解一元二次不等式即可确定第几年开始盈利.(2)由平均盈利额,应用基本不等式求最值注意等号成立条件,进而计算总收益.【小问1详解】由题意,渔船捕捞利润,解得,又,,故,∴该渔船捕捞3年开始盈利.【小问2详解】由题意,平均盈利额,当且仅当时等号成立,∴在第7年平均盈利额达到最大,总收益为万元.20、.【解析】设则的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产检查及隐患排查处理制度(8篇)
- 安全生产隐患排查整改制度(5篇)
- 辅警自查自纠报告
- 成本标杆的科室应用策略-2
- 安全环境培训技能评估练习
- 退货商品检验报告协议
- 聘用导游服务合同协议2025
- 普通货物运输公司安全生产监督检查制度
- 餐饮业食品安全管理人员考核卷
- 2026年丢失率控制协议
- 期末综合质量检测卷(试题)-2025-2026学年 六年级上册数学西师大版
- 2025年纳税筹划机考题库及答案
- 汇能控股集团校招题库及答案
- 喷塑委外合同范本
- 高标准农田建设培训课件
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
- 2025年国家开放大学《普通心理学(研究生)》期末考试参考题库及答案解析
- 多联机空调安装施工方案
- 2025秋期版国开河南电大专科《公务员制度讲座》一平台我要考试无纸化考试试题及答案
- 2025年三亚塑料包装材料项目可行性研究报告
- 北京市西城区2022-2023学年五年级上学期期末诊断
评论
0/150
提交评论