浙江省9+1高中联盟2026届高二上数学期末复习检测模拟试题含解析_第1页
浙江省9+1高中联盟2026届高二上数学期末复习检测模拟试题含解析_第2页
浙江省9+1高中联盟2026届高二上数学期末复习检测模拟试题含解析_第3页
浙江省9+1高中联盟2026届高二上数学期末复习检测模拟试题含解析_第4页
浙江省9+1高中联盟2026届高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省9+1高中联盟2026届高二上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与平行,则系数()A. B.C. D.2.丹麦数学家琴生(Jensen)是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,在上恒成立,则称函数在上为“凹函数”.则下列函数在上是“凹函数”的是()A. B.C. D.3.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1444.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.685.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.6.抛物线的准线方程为()A. B.C. D.7.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.8.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知椭圆=1(a>b>0)的右焦点为F,椭圆上的A,B两点关于原点对称,|FA|=2|FB|,且·≤a2,则该椭圆离心率的取值范围是()A.(0,] B.(0,]C.,1) D.,1)11.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}12.将的展开式按x的降幂排列,第二项不大于第三项,若,且,则实数x的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定点,,P是椭圆上的动点,则的的最小值为______.14.过点,的直线方程(一般式)为___________.15.从编号为01,02,…,60的60个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为02,08(编号按从小到大的顺序排列),则样本中最大的编号是_________16.若无论实数取何值,直线与圆恒有两个公共点,则实数的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.18.(12分)已知椭圆的离心率为,短轴长为2(1)求椭圆的方程;(2)设过点且斜率为的直线与椭圆交于不同的两点,,求当的面积取得最大值时的值19.(12分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?20.(12分)数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.21.(12分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值22.(10分)已知函数在时有极值0.(1)求函数的解析式;(2)记,若函数有三个零点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:2、B【解析】根据“凹函数”的定义逐项验证即可解出【详解】对A,,当时,,所以A错误;对B,,在上恒成立,所以B正确;对C,,,所以C错误;对D,,,因为,所以D错误故选:B3、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.4、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.5、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D6、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.7、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.8、B【解析】由已知可得只需对剩下3人全排即可【详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B9、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.10、B【解析】如图设椭圆的左焦点为E,根据题意和椭圆的定义可知,利用余弦定理求出,结合平面向量的数量积计算即可.【详解】由题意知,如图,设椭圆的左焦点为E,则,因为点A、B关于原点对称,所以四边形为平行四边形,由,得,,在中,,所以,由,得,整理,得,又,所以.故选:B11、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D12、A【解析】按照二项展开式展开表示出第二项第三项,解不等式即可.【详解】由二项展开式,第二项为:,第三项为:,依题意,两边约去得到,即,由知,则,同时约去得到.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据椭圆的定义可知,化简并结合基本不等式可求的的最小值.【详解】由题可知:点,是椭圆的焦点,所以,所以,即,当且仅当时等号成立,即时等号成立.所以的最小值为,故答案为:.14、【解析】利用两点式方程可求直线方程.【详解】∵直线过点,,∴,∴,化简得.故答案为:.15、56【解析】根据系统抽样的定义得到编号之间的关系,即可得到结论.【详解】由已知样本中的前两个编号分别为02,08,则样本数据间距为,则样本容量为,则对应的号码数,则当时,x取得最大值为56故答案为:5616、【解析】根据点到直线的距离公式得到,根据,解不等式得到答案.【详解】依题意有圆心到直线的距离,即,又无论取何值,,故,故.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意可得,,再由,即可求解.(2)设直线的方程为,将直线与椭圆方程联立求得关于的方程,利用弦长公式求出,再利用点到直线的距离求出点到直线的距离,利用三角形的面积公式配方即可求解.【详解】解(1)由题意得:,,∴,∴∴椭圆的方程为(2)∵直线的斜率为,∴可设直线的方程为与椭圆的方程联立可得:①设两点的坐标为,由韦达定理得:,∴点到直线的距离,∴由①知:,,令,则,∴令,则在上的最大值为∴的最大值为综上所述:三角形面积的最大值2.【点睛】本题考查了根据求椭圆的标准方程,考查了直线与椭圆额位置关系中三角形面积问题,考查了学生的计算能力,属于中档题.18、(1);(2).【解析】(1)由短轴长得,由离心率处也的关系,从而可求得,得椭圆方程;(2)设,,直线的方程为,代入椭圆方程应用韦达定理得,由弦长公式得弦长,求出原点到直线的距离,得出三角形面积为的函数,用换元法,基本不等式求得最大值,得值【详解】解:(1)由题意得,,所以,,椭圆的方程为(2)直线的方程为,代入椭圆的方程,整理得由题意,,设,则,弦长,点到直线的距离,所以的面积,令,则,当且仅当时取等号.所以,对应的,可解得,满足题意19、(1)答案见解析;(2)应选择.【解析】(1)由每台设备需更换零件个数的分布列求出的所有可能值,并求出对应的概率即可得解.(2)分别求出和时购买零件所需费用的期望,比较大小即可作答.【小问1详解】的可能取值为10,11,12,13,14,,,,,,则的分布列为:10111213140.090.30.370.20.04【小问2详解】记为当时购买零件所需费用,,,,,元,记为当时购买零件所需费用,,,,元,显然,所以应选择.20、(1)证明见解析;(2).【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行证明即可;(2)运用裂项相消法进行求解即可.【小问1详解】∵,∴,又∵,∴,∴数列是首项为0,公差为1的等差数列,∴,∴,从而,∴数列是首项为2,公比为2的等比数列;【小问2详解】由(1)知,则,∴,∴.21、(1)+1;(2)单调增区间,单调减区间是和,极大值为,极小值为【解析】(1)根据导数的几何意义可求出切线斜率,求出后利用点斜式即可得解;(2)求出函数导数后,解一元二次不等式分别求出、时的取值范围即可得解.【详解】(1)因为,所以,∴切线方程为,即+1;(2),所以当或时,,当时,,所以函数单调增区间是,单调减区间是和,极大值为,极小值为22、(1)(2)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论