版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省济宁市达标名校高二上数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为2.圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离3.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.84.“”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则为()A. B.C. D.6.已知是函数的导函数,则()A. B.C. D.7.不等式的解集为()A. B.C.或 D.或8.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.9.双曲线的焦点到渐近线的距离为()A. B.C. D.10.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.11.执行如图所示的程序框图,则输出的结果为()A. B.C. D.12.过点且斜率为的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.14.在数列中,,,,若数列是递减数列,数列是递增数列,则______15.已知满足约束条件,则的最小值为___________16.正三棱柱的底面边长和高均为2,点为侧棱的中点,连接,,则点到平面的距离为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中二项式系数和为16(1)求展开式中二项式系数最大的项;(2)设展开式中的常数项为p,展开式中所有项系数的和为q,求18.(12分)已知直线经过点,,直线经过点,且.(1)分别求直线,的方程;(2)设直线与直线的交点为,求外接圆的方程.19.(12分)中,三内角A,B,C所对的边分别为a,b,c,已知(1)求角A;(2)若,角A的角平分线交于D,,求a20.(12分)如图,已知抛物线的焦点为F,抛物线C上的点到准线的最小距离为1(1)求抛物线C的方程;(2)过点F作互相垂直的两条直线l1,l2,l1与抛物线C交于A,B两点,l2与抛物线C交于C,D两点,M,N分别为弦AB,CD的中点,求|MF|·|NF|的最小值21.(12分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.22.(10分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值(1)求a,b,c的值;(2)求y=f(x)在区间[-3,1]上最大值和最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.2、A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A3、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.4、A【解析】根据题意,结合直线与圆的位置关系求出,即可求解.【详解】根据题意,由直线与圆相切,知圆心到直线的距离,解得或,因此“”是“直线与圆相切”的充分不必要条件.故选:A.5、B【解析】根据空间向量运算求得正确答案.【详解】.故选:B6、B【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故选:B.7、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A8、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.9、D【解析】根据题意,由双曲线的标准方程可得双曲线的焦点坐标以及渐近线方程,由点到直线的距离公式计算可得答案.【详解】解:根据题意,双曲线的方程为,其焦点坐标为,其渐近线方程为,即,则其焦点到渐近线的距离;故选D.【点睛】本题考查双曲线的几何性质,关键是求出双曲线的渐近线与焦点坐标.10、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A11、B【解析】写出每次循环的结果,即可得到答案.【详解】当时,,,,;,此时,退出循环,输出的的为.故选:B【点睛】本题考查程序框图的应用,此类题要注意何时循环结束,建议数据不大时采用写出来的办法,是一道容易题.12、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.14、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:15、【解析】根据题意,作出可行域,进而根据几何意义求解即可.【详解】解:作出可行域如图,将变形为,所以根据几何意义,当直线过点时,有最小值,所以联立方程得,所以的最小值为故答案为:16、【解析】建立空间直角坐标系,利用空间向量求点面距离的公式可以直接求出.【详解】如图,建立空间直角坐标系,为的中点,由已知,,,,,所以,,设平面的法向量为,,即:,取,得,,则点到平面的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由二项式系数和的性质得出,再由性质求出展开式中二项式系数最大的项;(2)由通项得出,利用赋值法得出,再求解【小问1详解】由题意可得,解得.,展开式中二项式系数最大的项为;【小问2详解】,其展开式的通项为,令,得∴常数项令,可得展开式中所有项系数的和为,∴18、(1);(2).【解析】(1)根据两点式即可求出直线l1的方程,根据直线垂直的关系即可求l2的方程;(2)先求出C点坐标,通过三角形的长度关系知道三角形是以AC为斜边长的直角三角形,故AC的中点即为外心,AC即为直径.解析:(1)∵直线经过点,,∴,设直线的方程为,∴,∴.(2),即:,∴,的中点为,∴的外接圆的圆心为,半径为,∴外接圆的方程为:.点睛:这个题目考查的是已知两直线位置关系求参的问题,还考查了三角形外接圆的问题.对于三角形为外接圆,圆心就是各个边的中垂线的交点,钝角三角形外心在三角形外侧,锐角三角形圆心在三角形内部,直角三角形圆心在直角三角形斜边的中点19、(1)(2)【解析】(1)根据正弦定理统一三角函数化简即可求解;(2)根据角平分线建立三角形面积方程求出b,再由余弦定理求解即可.【小问1详解】由及正弦定理,得∵,∴∵,∴∵,∴【小问2详解】∵,∴,解得由余弦定理,得,∴.20、(1)(2)8【解析】(1)由抛物线C上的点到准线的最小距离为1,所以,即可求得抛物线的方程;(2)设直线AB的斜率为k,则直线CD的斜率为,得到直线AB的方程为,联立方程,求得,进而求得的坐标,得到的表达式,结合基本不等式,即可求解.【小问1详解】解:因为抛物线C上的点到准线的最小距离为1,所以,解得,所以抛物线C的方程为【小问2详解】解:由(1)可知焦点为F(1,0),由已知可得ABCD,所以直线AB,CD的斜率都存在且均不为0,设直线AB斜率为k,则直线CD的斜率为,所以直线AB的方程为,联立方程,消去x得,设点A(x1,y1),B(x2,y2),则,因为M(xM,yM)为弦AB的中点,所以,由,得,所以点,同理可得,所以,=,所以,当且仅当,即时,等号成立,所以的最小值为21、(1)(2)证明见解析【解析】(1)设点,由即所以化简即可得到答案.(2)设,,设直线l的方程为:与(1)中W的轨迹方程联立,得出韦达定理,求出,同理设直线的方程为:,得出,再根据从而可证明结论.【小问1详解】设点,因为,所以,因为,所以所以所以所以所以C的方程为:【小问2详解】设,,设直线l的方程为:,则由得:所以,,所以所以设直线的方程为:,则同理可得因所以即,即,即解得,即所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年上海大学高职单招职业适应性测试备考题库有答案解析
- 2026年四川现代职业学院高职单招职业适应性考试备考试题有答案解析
- 2026年江西新能源科技职业学院单招综合素质考试备考题库带答案解析
- 2026年吕梁职业技术学院单招综合素质笔试备考试题带答案解析
- 2026年威海职业学院单招综合素质笔试参考题库带答案解析
- 2026年运城职业技术大学单招职业技能考试参考题库带答案解析
- 2026年宜春职业技术学院单招综合素质考试模拟试题带答案解析
- 2026年浙江经贸职业技术学院高职单招职业适应性测试备考试题有答案解析
- 2026年徽商职业学院单招综合素质笔试备考题库带答案解析
- 2025年商场购物环境管理操作指南
- 2025年社区护理年度工作总结与展望
- 2026年黑龙江农业经济职业学院高职单招职业适应性测试模拟试题及答案详解
- 2026年ps一级考试试题
- 2025年保安员理论考试题库附答案
- 2025-2026学年上海市行知实验中学高二上册期中考试语文试题 含答案
- 2026年广东省佛山市六年级数学上册期末考试试卷及答案
- 2026届吉林省长春六中、八中、十一中等省重点中学高二生物第一学期期末联考试题含解析
- 2026届浙江省学军中学英语高三第一学期期末达标检测试题含解析
- 工会女工培训课件
- 2025新疆和田地区“才聚和田·智汇玉都”招才引智招聘工作人员204人(公共基础知识)综合能力测试题附答案解析
- 2026年医疗机构人力资源配置降本增效项目分析方案
评论
0/150
提交评论