2026届吉林省长春汽车经济技术开发区第六中学高二数学第一学期期末教学质量检测模拟试题含解析_第1页
2026届吉林省长春汽车经济技术开发区第六中学高二数学第一学期期末教学质量检测模拟试题含解析_第2页
2026届吉林省长春汽车经济技术开发区第六中学高二数学第一学期期末教学质量检测模拟试题含解析_第3页
2026届吉林省长春汽车经济技术开发区第六中学高二数学第一学期期末教学质量检测模拟试题含解析_第4页
2026届吉林省长春汽车经济技术开发区第六中学高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林省长春汽车经济技术开发区第六中学高二数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.2.下列数列中成等差数列的是()A. B.C. D.3.已知,是椭圆的两焦点,是椭圆上任一点,从引外角平分线的垂线,垂足为,则点的轨迹为()A.圆 B.两个圆C.椭圆 D.两个椭圆4.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.125.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形6.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.27.在等比数列中,,,则等于()A.90 B.30C.70 D.408.已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,) B.C. D.9.若命题“对任意,使得成立”是真命题,则实数a的取值范围是()A. B.C. D.10.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.11.已知焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C.2 D.12.直线分别与曲线,交于,两点,则的最小值为()A. B.1C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,集合,则__________.14.已知,求_____________.15.若命题P:对于任意,使不等式为真命题,则实数的取值范围是___________.16.过点,的直线方程(一般式)为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离18.(12分)如图,在长方体中,,.点E在上,且(1)求证:平面;(2)求二面角的余弦值19.(12分)已知数列为等差数列,满足,.(1)求数列的通项公式;(2)求数列的前n项和,并求的最大值.20.(12分)已知函数f(x)=x-mlnx-m.(1)讨论函数f(x)的单调性;(2)若函数f(x)有最小值g(m),证明:g(m)在上恒成立.21.(12分)如图,已知矩形ABCD所在平面外一点P,平面ABCD,E、F分别是AB、PC的中点求证:(1)共面;(2)求证:22.(10分)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.2、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C3、A【解析】设的延长线交的延长线于点,由椭圆性质推导出,由题意知是△的中位线,从而得到点的轨迹是以为圆心,以为半径的圆【详解】是焦点为、的椭圆上一点为的外角平分线,,设的延长线交的延长线于点,如图,,,,由题意知是△的中位线,,点的轨迹是以为圆心,以为半径的圆故选:A4、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B5、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.6、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.7、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D8、D【解析】过作准线的垂线,垂足为,则,当且仅当三点共线时等号成立,此时,故,所以,选D9、A【解析】由题得对任意恒成立,求出的最大值即可.【详解】解:由题得对任意恒成立,(当且仅当时等号成立)所以故选:A10、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D11、D【解析】由题意,化简即可得出双曲线的离心率【详解】解:由题意,.故选:D12、B【解析】设,,,,得到,用导数法求解.【详解】解:设,,,,则,,,令,则,函数在上单调递减,在上单调递增,时,函数的最小值为1,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:14、【解析】根据导数的定义即可求解.【详解】,所以,故答案为:.15、【解析】根据题意,结合指数函数不等式,将原问题转化为关于的不等式,对于任意恒成立,即可求解.【详解】根据题意,知对于任意,恒成立,即,化简得,令,,则恒成立,即,解得,故.故答案为:.16、【解析】利用两点式方程可求直线方程.【详解】∵直线过点,,∴,∴,化简得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)建立空间直角坐标系,利用向量法由求解;(1)建立空间直角坐标系,先取得平面的一个法向量,,,然后由求解【小问1详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系.则,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,则直线与直线所成角的余弦值为;【小问2详解】,2,,,2,,设平面的一个法向量,,,则,取,得,1,,又,点到平面的距离18、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别写出,,的坐标,证明,,即可得证;(2)由(1)知,的法向量为,直接写出平面法向量,按照公式求解即可.【小问1详解】在长方体中,以为坐标原点,所在直线分别为轴,轴,轴建立如图所示空间直角坐标系因为,,所以,,,,,则,,,所以有,,则,,又所以平面小问2详解】由(1)知平面的法向量为,而平面法向量为所以,由图知二面角为锐二面角,所以二面角的余弦值为19、(1)(2),45【解析】(1)由等差数列的通项列出方程组,得出通项公式;(2)先得出,再由二次函数的性质得出最大值.【小问1详解】由,解得,即【小问2详解】,二次型函数开口向下,对称轴为,则当或时,有最大值45.20、(1)答案见解析(2)证明见解析【解析】(1)求出函数的导数,讨论其符号后可得函数的单调区间.(2)根据(1)的结论可得函数的最小值,再利用导数可证不等式.【小问1详解】函数的定义域为,且,当时,在上恒成立,所以此时在上为增函数,当时,由,解得,由,解得,所以在上为减函数,在上为增函数,综上:当时,在上为增函数,当时,在上为减函数,在上为增函数;【小问2详解】由(1)知:当时,在上为增函数,无最小值.当时,在上上为减函数,在上为增函数,所以,即,则,由,解得,由,解得,所以在上为增函数,在上为减函数,所以,即在上恒成立.21、(1)详见解析;(2)详见解析.【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,,,求出,,,,0,,,,,从而,由此能证明共面(2)求出,0,,,,,由,能证明【详解】证明:如图,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设,,,则0,,0,,2b,,2b,,0,,为AB的中点,F为PC的中点,0,,b,,b,,,2b,,共面.(2),【点睛】本题考查三个向量共面的证明,考查两直线垂直的证明,是基础题22、(1)证明见解析;(2)【解析】(1)要证,可证,由题意可得,,易证,从而平面,即有,从而得证;(2)取中点,根据题意可知,两两垂直,所以以点为坐标原点,建立空间直角坐标系,再分别求出向量和平面的一个法向量,即可根据线面角的向量公式求出【详解】(1)中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以(2)由,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论