甘肃省临夏州临夏中学2026届高一数学第一学期期末联考模拟试题含解析_第1页
甘肃省临夏州临夏中学2026届高一数学第一学期期末联考模拟试题含解析_第2页
甘肃省临夏州临夏中学2026届高一数学第一学期期末联考模拟试题含解析_第3页
甘肃省临夏州临夏中学2026届高一数学第一学期期末联考模拟试题含解析_第4页
甘肃省临夏州临夏中学2026届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省临夏州临夏中学2026届高一数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.2.定义在上的奇函数,满足,则()A. B.C.0 D.13.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度4.设集合,,则集合A. B.C. D.5.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则6.已知函数是定义在上的奇函数,当时,,则当时,表达式是A. B.C. D.7.已知是定义域为的单调函数,且对任意实数,都有,则的值为()A.0 B.C. D.18.当时,函数(,),取得最小值,则关于函数,下列说法错误的是()A.是奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线对称D.是偶函数且图象关于直线对称9.设a>0且a≠1,则“函数fx=ax在R上是减函数”是“函数gxA.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则的值等于_____12.设是以2为周期的奇函数,且,若,则的值等于___13.已知函数,若在上是增函数,且直线与的图象在上恰有一个交点,则的取值范围是________.14.已知圆C:(x﹣2)2+(y﹣1)2=10与直线l:2x+y=0,则圆C与直线l的位置关系是_____15.圆在点P(1,)处的切线方程为_____16.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=0相交于A、B两点(1)求公共弦AB的长;(2)求经过A、B两点且面积最小的圆的方程18.已知函数,在同一周期内,当时,取得最大值3;当时,取得最小值.(1)求函数的解析式;(2)求函数的单调减区间;(3)当时,函数有两个零点,求实数m的取值范围.19.已知函数.(1)判断的奇偶性,并证明;(2)证明:在区间上单调递减.20.在直角坐标平面中,角α的始边为x轴正半轴,终边过点(-2,y),且tana=-,分别求y,sinα,cosα的值21.已知函数.(1)求函数的单调递增区间;(2)求函数在区间上的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【点睛】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题2、D【解析】由得出,再结合周期性得出函数值.【详解】,,即,,则故选:D3、D【解析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.4、D【解析】并集由两个集合所有元素组成,排除重复的元素,故选.5、A【解析】本道题目分别结合平面与平面平行判定与性质,平面与平面平行垂直判定与性质,即可得出答案.【详解】A选项,结合一条直线与一平面垂直,则过该直线的平面垂直于这个平面,故正确;B选项,平面垂直,则位于两平面的直线不一定垂直,故B错误;C选项,可能平行于与相交线,故错误;D选项,m与n可能异面,故错误【点睛】本道题目考查了平面与平面平行判定与性质,平面与平面平行垂直判定与性质,发挥空间想象能力,找出选项的漏洞,即可.6、D【解析】若,则,利用给出的解析式求出,再由奇函数的定义即,求出.【详解】设,则,当时,,,函数是定义在上的奇函数,,,故选D.【点睛】本题考查了函数奇偶性在求解析式的应用,属于中档题.本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为7、B【解析】令,可以求得,即可求出解析式,进而求出函数值.【详解】根据题意,令,为常数,可得,且,所以时有,将代入,等式成立,所以是的一个解,因为随的增大而增大,所以可以判断为增函数,所以可知函数有唯一解,又因为,所以,即,所以.故选:B.【点睛】本题主要考查函数单调性和函数的表示方法,属于中档题.8、C【解析】根据正弦型函数的性质逐一判断即可.【详解】因为当时,函数取得最小值,所以,因为,所以令,即,所以,设,因为,所以函数是奇函数,因此选项B、D不正确;因为,,所以,因此函数关于直线对称,因此选项A不正确,故选:C9、A【解析】函数f(x)=ax在R上是减函数,根据指数函数的单调性得出0<a<1;函数g(x)=(4-a)⋅x在R上是增函数,得出0<a<4且【详解】函数f(x)=ax在R上是减函数,则函数g(x)=(4-a)⋅x在R上是增函数,则4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函数fx=ax在R上是减函数”是“函数gx故选:A.10、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.12、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:13、【解析】由正弦函数的单调性以及图象的分析得出的取值范围.【详解】因为在上是增函数,所以,解得因为直线与的图象在上恰有一个交点,所以,解得,综上.故答案为:14、相交【解析】根据题意只需判断圆心到直线的距离与半径比较大小即可判断详解】由题意有圆心,半径则圆心到直线的距离故直线与圆C相交故答案为:相交【点睛】本题主要考查直线和圆的位置关系的判断,属于基础试题15、x-y+2=0【解析】圆,点在圆上,∴其切线方程为,整理得:16、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(x+2)2+(y-1)2=5.【解析】(1)直接把两圆的方程作差消去二次项即可得到公共弦所在的直线方程,利用点到直线距离公式以及勾股定理可得结果;(2)经过A、B两点且面积最小的圆就是以为直径的圆,求出中点坐标及的长度,则以为直径的圆的方程可求.【详解】(1)圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=方程相减,可得得x-2y+4=0,此为公共弦AB所在的直线方程圆心C1(-1,-1),半径r1=.C1到直线AB的距离为d=故公共弦长|AB|=2.(2)过A、B且面积最小的圆就是以AB为直径的圆,x-2y+4=0与x2+y2+2x+2y-8=0联立可得,,其中点坐标为,即圆心为,半径为,所求圆的方程为(x+2)2+(y-1)2=5.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.18、(1);(2);(3).【解析】(1)根据函数在同一周期的最值,确定最小正周期和,再由最大值求出,即可得出函数解析式;(2)根据正弦函数的单调递减区间列出不等式求解,即可得出结果;(3)根据自变量的范围,先确定的范围及单调性,根据函数有两个零点,推出函数与直线有两不同交点,进而可得出结果.【详解】(1)因为函数,在同一周期内,当时,取得最大值3;当时,取得最小值,,,则,所以;又,所以,解得,又,所以,因此;(2)由,解得,∴函数的单调递减区间为;(3)由,解得,即函数的单调递增区间为;,所以在区间上单调递增,在上单调递增;所以,,,又有两个零点,等价于方程有两不等实根,即函数与直线有两不同交点,因此,只需,解得,即实数的取值范围是【点睛】思路点睛:已知含三角函数的函数在给定区间的零点个数求参数时,一般需要分离参数,将问题转化为三角函数与参数对应的直线交点问题求解,利用三角函数的性质,确定其在给定区间的单调性与最值等,即可求解(有时需要利用数形结合的方法求解).19、(1)是偶函数,证明见解析(2)证明见解析【解析】(1)先求定义域,再利用函数奇偶性的定义证明即可,(2)利用单调性的定义证明【小问1详解】为偶函数,证明如下:定义域为R,因为,所以是偶函数.【小问2详解】任取,且,则因为,所以,所以,即,由函数单调性定义可知,在区间上单调递减.20、.【解析】利用直接求出y的值;然后直接构造直角三角形利用即可得解【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论