山东省枣庄八中2026届数学高二上期末联考模拟试题含解析_第1页
山东省枣庄八中2026届数学高二上期末联考模拟试题含解析_第2页
山东省枣庄八中2026届数学高二上期末联考模拟试题含解析_第3页
山东省枣庄八中2026届数学高二上期末联考模拟试题含解析_第4页
山东省枣庄八中2026届数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄八中2026届数学高二上期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若不等式在上有解,则的最小值是()A.0 B.-2C. D.2.如果直线与直线垂直,那么的值为()A. B.C. D.23.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定4.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.5.函数的值域为()A. B.C. D.6.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A. B.C. D.7.圆关于直线对称圆的标准方程是()A. B.C. D.8.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.9.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.10.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.11.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值12.已知角为第二象限角,,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为三角形的一个内角,已知曲线:,则可能是___________.(写出不同曲线的名称,尽可能多.注:在一些问题情景中,直线可以理解成是特殊的曲线)14.若函数,则_______15.记为等差数列的前n项和.若,则__________16.在等比数列中,若,是方程两根,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)命题p:关于x的不等式对一切恒成立;命题q:函数在上递增,若为真,而为假,求实数的取值范围18.(12分)已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短?求此弦长19.(12分)已知函数(1)若在上单调递减,求实数a的取值范围(2)若是方程的两个不相等的实数根,证明:20.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.21.(12分)如图,已知多面体,,,均垂直于平面,,,,(1)证明:平面;(2)求直线平面所成的角的正弦值22.(10分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与的关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.2、A【解析】根据两条直线垂直列方程,化简求得的值.【详解】由于直线与直线垂直,所以.故选:A3、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A4、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.5、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C6、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.7、D【解析】先根据圆的标准方程得到圆的圆心和半径,求出圆心关于直线的对称点,进而写出圆的标准方程.【详解】因为圆的圆心为,半径为,且关于直线对称的点为,所以所求圆的圆心为、半径为,即所求圆的标准方程为.故选:D.8、D【解析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质9、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D10、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C11、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C12、C【解析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【详解】∵,是第二象限角,∴,∴.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、焦点在轴上的椭圆,焦点在轴上的双曲线,两条直线.【解析】讨论,和三种情况,进而根据曲线方程的特征得到答案.【详解】若,则曲线:,而,曲线表示焦点在y轴上的椭圆;若,则曲线:或,曲线表示两条直线;若,则曲线:,而,曲线表示焦点在x轴上的双曲线.故答案为:焦点在y轴上椭圆,焦点在x轴上的双曲线,两条直线.14、1【解析】先对函数求导,然后令可求出的值【详解】因为,所以,则,解得故答案为:15、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.16、.【解析】由题意求得,,再结合等比数列的性质,即可求解.【详解】由题意知,,是方程的两根,可得,,又由,,所以,,可得,又由,所以.故答案为:.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的性质的应用,其中解答中熟练应用等比数列的性质是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】依题意,可分别求得p真、q真时m的取值范围,再由p∨q为真,而p∧q为假求得实数a的取值范围即可【详解】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;①若命题p正确,则△=(2a)2﹣42<0,即﹣2<a<2;②命题q:函数f(x)=logax在(0,+∞)上递增⇒a>1,∵p∨q为真,而p∧q为假,∴p、q一真一假,当p真q假时,有,∴﹣2<a≤1;当p假q真时,有,∴a≥2∴综上所述,﹣2<a≤1或a≥2即实数a的取值范围为(﹣2,1]∪[2,+∞)【点睛】本题考查复合命题的真假,分别求得p真、q真时m的取值范围是关键,考查理解与运算能力,属于中档题18、(1)证明见解析;(2)当时,l被C截得的弦长最短,最短弦长为.【解析】(1)求出直线l的定点,进而判断定点和圆C的位置关系,最后得到答案;(2)当圆心C到直线l的距离最大时,弦长最短,进而求出m,然后根据勾股定理求出弦长.【详解】(1)直线l的方程可化为y+3=2m(x-4),则l过定点P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P在圆内,故直线l与圆C总相交(2)圆的C方程可化为:(x-3)2+(y+6)2=25,如图所示,当圆心C(3,-6)到直线l的距离最大时,弦AB的长度最短,此时PC⊥l,又,所以直线l的斜率为,则,在直角中,|PC|=,|AC|=5,所以|AB|=.故当时,l被C截得的弦长最短,最短弦长为.19、(1);(2)详见解析【解析】(1)首先求函数的导数,结合函数的导数与函数单调性的关系,参变分离后,转化为求函数的最值,即可求得实数的取值范围;(2)将方程的实数根代入方程,再变形得到,利用分析法,转化为证明,通过换元,构造函数,转化为利用导数证明,恒成立.【小问1详解】,,在上单调递减,在上恒成立,即,即在,设,,,当时,,函数单调递增,当时,,函数单调递减,所以函数的最大值是,所以;【小问2详解】若是方程两个不相等的实数根,即又2个不同实数根,且,,得,即,所以,不妨设,则,要证明,只需证明,即证明,即证明,令,,令函数,所以,所以函数在上单调递减,当时,,所以,,所以,即,即得【点睛】本题考查利用导数的单调性求参数的取值范围,以及证明不等式,属于难题,导数中的双变量问题,往往采用分析法,转化为函数与不等式的关系,通过构造函数,结合函数的导数,即可证明.20、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.21、(1)证明见解析;(2)【解析】(1)由已知条件可得,,则,,再利用线面垂直的判定定理可证得结论;(2)如图,过点作,交直线于点,连接,可证得平面,从而是与平面所成的角,然后在求解即可【详解】(1)证明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如图,过点作,交直线于点,连接由平面,平面,得平面平面,由,得平面,所以是与平面所成的角由,,得,,所以,故因此,直线与平面所成的角的正弦值是【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点作,交直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论