2026届贵州省遵义求是高级中学数学高二上期末综合测试试题含解析_第1页
2026届贵州省遵义求是高级中学数学高二上期末综合测试试题含解析_第2页
2026届贵州省遵义求是高级中学数学高二上期末综合测试试题含解析_第3页
2026届贵州省遵义求是高级中学数学高二上期末综合测试试题含解析_第4页
2026届贵州省遵义求是高级中学数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届贵州省遵义求是高级中学数学高二上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若两条平行线与之间的距离是2,则m的值为()A.或11 B.或10C.或12 D.或112.已知等比数列中,,,则公比()A. B.C. D.3.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.4.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生5.已知直线,,若,则实数()A. B.C.1 D.26.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.7.已知椭圆的左、右焦点分别为,,直线过且与椭圆相交于不同的两点,、不在轴上,那么△的周长()A.是定值B.是定值C.不是定值,与直线的倾斜角大小有关D.不是定值,与取值大小有关8.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. B.C. D.9.若直线与互相平行,且过点,则直线的方程为()A. B.C. D.10.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.511.已知函数,在定义域内任取一点,则使的概率是()A. B.C. D.12.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知正方形的边长为2,对部分以为轴进行翻折,翻折到,使二面角的平面角为直二面角,则___________.14.已知向量,,若,则实数=________.15.已知双曲线C:的一个焦点坐标为,则其渐近线方程为__________16.已知,,且与的夹角为钝角,则x的取值范围是___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程18.(12分)在水平桌面上放一只内壁光滑的玻璃水杯,已知水杯内壁为抛物面型(抛物面指抛物线绕其对称轴旋转所得到的面),抛物面的轴截面是如图所示的抛物线.现有一些长短不一、质地均匀的细直金属棒,其长度均不小于抛物线通径的长度(通径是过抛物线焦点,且与抛物线的对称轴垂直的直线被抛物线截得的弦),若将这些细直金属棒,随意丢入该水杯中,实验发现:当细棒重心最低时,达到静止状态,此时细棒交汇于一点.(1)请结合你学过的数学知识,猜想细棒交汇点的位置;(2)以玻璃水杯内壁轴截面的抛物线顶点为原点,建立如图所示直角坐标系.设玻璃水杯内壁轴截面的抛物线方程为,将细直金属棒视为抛物线的弦,且弦长度为,以细直金属棒的中点为其重心,请从数学角度解释上述实验现象.19.(12分)已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值20.(12分)已知等比数列前3项和为(1)求的通项公式;(2)若对任意恒成立,求m的取值范围21.(12分)已知椭圆:的离心率为,,分别为椭圆的左,右焦点,为椭圆上一点,的周长为.(1)求椭圆的方程;(2)为圆上任意一点,过作椭圆的两条切线,切点分别为A,B,判断是否为定值?若是,求出定值:若不是,说明理由,22.(10分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用平行线间距离公式进行求解即可.【详解】因为两条平行线与之间的距离是2,所以,或,故选:A2、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.3、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.4、C【解析】表示事件至少有一个发生概率,据此得到答案.【详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.5、D【解析】根据两条直线的斜率相等可得结果.【详解】因为直线,,且,所以,故选:D.6、B【解析】根据代入计算化简即可.【详解】故选:B.7、B【解析】由直线过且与椭圆相交于不同的两点,,且,为椭圆两焦点,根据椭圆的定义即可得△的周长为,则答案可求【详解】椭圆,椭圆的长轴长为,∴△的周长为故选:B8、A【解析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从5个点中任取3个有共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.9、D【解析】由题意设直线的方程为,然后将点代入直线中,可求出的值,从而可得直线的方程【详解】因为直线与互相平行,所以设直线的方程为,因为直线过点,所以,得,所以直线的方程为,故选:D10、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D11、A【解析】解不等式,根据与长度有关的几何概型即可求解.【详解】由题意得,即,由几何概型得,在定义域内任取一点,使的概率是.故选:A.12、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】根据,则,根据条件求得向量夹角即可求得结果.【详解】由题知,,取的中点O,连接,如图所示,则,又二面角的平面角为直二面角,则,又,则,为等边三角形,从而,则,故答案为:-214、【解析】由可求得【详解】因为,所以,故答案为:【点睛】本题考查向量垂直的坐标表示,属于基础题15、【解析】根据双曲线的定义由焦点坐标求出,即可得到双曲线方程,从而得到其渐近线方程;【详解】解:因为双曲线C:的一个焦点坐标为,即,,又,所以,所以双曲线方程为,所以双曲线的渐近线为;故答案为:16、∪【解析】根据题意得出且与不共线,然后根据向量数量积的定义及向量共线的条件求出x的取值范围.【详解】∵与的夹角为钝角,且与不共线,即,且,解得,且,∴x的取值范围是∪.故答案为:∪.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2)y=x+7【解析】(1)设A(x1,y1),B(x2,y2),直线AB的斜率k==,代入即可求得斜率;(2)由(1)中直线AB的斜率,根据导数的几何意义求得M点坐标,设直线AB的方程为y=x+m,与抛物线联立,求得根,结合弦长公式求得AB,由知,|AB|=2|MN|,从而求得参数m.【详解】解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k===1(2)由y=,得y′=设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1)设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|将y=x+m代入y=得x2-4x-4m=0当Δ=16(m+1)>0,即m>-1时,x1,2=2±2从而|AB|=|x1-x2|=由题设知|AB|=2|MN|,即=2(m+1),解得m=7所以直线AB的方程为y=x+718、(1)抛物线的焦点或抛物面的焦点(2)答案见解析【解析】(1)结合通径的特点可猜想得到结果;(2)将问题转化为当时,只要过点,则中点到的距离最小,根据,结合抛物线定义可得结论.【小问1详解】根据通径的特征,知通径会经过抛物线的焦点达到静止状态,则可猜想细棒交汇点位置为:抛物线焦点或抛物面的焦点.【小问2详解】解释上述现象,即证:当(为抛物线通径)时,只要过点,则中点到的距离最小;如图所示,记点在抛物线准线上的射影分别是,,由抛物线定义知:,当过抛物线焦点时,点到准线距离取得最小值,最小值为的一半,此时点到轴距离最小.【点睛】关键点点睛:本题考查抛物线的实际应用问题,解题关键是能够将问题转化为抛物线焦点弦的中点到轴距离最小问题的证明,通过抛物线的定义可证得结论.19、(1);(2)证明见解析.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据角平分线的性质,结合一元二次方程根与系数关系、斜率公式进行求解即可.【小问1详解】椭圆的离心率,又,∴∵椭圆C:经过点,解得,∴椭圆C的方程为;【小问2详解】∵∠MPN的角平分线总垂直于y轴,∴MP与NP所在直线关于直线对称.设直线MP的斜率为k,则直线NP的斜率为∴设直线MP的方程为,直线NP的方程为设点,由消去y,得∵点在椭圆C上,则有,即同理可得∴,又∴直线MN的斜率为【点睛】关键点睛:由∠MPN的角平分线总垂直于y轴,得到MP与NP所在直线关于直线对称是解题的关键.20、(1)(2)【解析】(1)由等比数列的基本量,列式,即可求得首项和公比,再求通项公式;(2)由题意转化为求数列的前项和的最大值,即可求参数的取值范围.【小问1详解】设等比数列的公比为,则,①,即,得,即,代入①得,解得:,所以;【小问2详解】由(1)可知,数列是首项为2,公比为的等比数列,,若对任意恒成立,即,数列,,单调递增,的最大值无限趋近于4,所以21、(1)(2)是;【解析】(1)由离心率和焦点三角形周长可求出,结合关系式得出,即可得出椭圆的方程;(2)由平行于轴特殊情况求出,即;当平行于轴时,设过的直线为,联立椭圆方程,令化简得关于的二次方程,由韦达定理即可求解.【小问1详解】由题可知,,解得,又,解得,故椭圆的标准方程为:;【小问2详解】如图所示,当平行于轴时,恰好平行于轴,,,;当不平行于轴时,设,设过点的直线为,联立得,令得,化简得,设,则,又,故,即.综上所述,.22、(1);(2)证明见解析.【解析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【详解】(1)因为函数在上单调递增,所以在上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论