版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江金华市浙师大附中2026届高二上数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.3.圆与圆的位置关系为()A.内切 B.外切C.相交 D.相离4.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.35.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.186.执行如图所示的程序框图,若输入t的取值范围为,则输出s的取值范围为()A. B.C. D.7.对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.椭圆的焦点为、,上顶点为,若,则()A B.C. D.9.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.10.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.11.如图,在平行六面体中,M为与的交点,若,,,则下列向量中与相等的向量是()A. B.C. D.12.当我们停放自行车时,只要将自行车旁的撑脚放下,自行车就稳了,这用到了()A.三点确定一平面 B.不共线三点确定一平面C.两条相交直线确定一平面 D.两条平行直线确定一平面二、填空题:本题共4小题,每小题5分,共20分。13.已知点P在圆上,已知,,则的最小值为___________.14.若满足约束条件,则的最大值为_________.15.各项均为正数的等比数列的前n项和为,满足,,则___________.16.已知经过两点,的直线的斜率为1,则a的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线:.(1)若曲线是双曲线,求的取值范围;(2)设,已知过曲线的右焦点,倾斜角为的直线交曲线于A,B两点,求.18.(12分)已知数列是递增的等比数列,是其前n项和,,(1)求数列的通项公式;(2)设,求数列的前n项和19.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.20.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.21.(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,(1)若,求c的值;(2)求最大值22.(10分)如图,在三棱锥中,平面,,,为的中点.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A2、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.3、B【解析】求出两圆的圆心距与半径之和、半径之差比较大小即可得出正确答案.【详解】由可得圆心为,半径,由可得圆心为,半径,所以圆心距为,所以两圆相外切,故选:B.4、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.5、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B6、A【解析】由程序图可得,,再分段求解函数的值域,即可求解【详解】由程序图可得,当时,,,当时,,,综上所述,的取值范围为,故选:A7、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.8、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.9、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B10、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.11、A【解析】利用空间向量的三角形法则可得,结合平行六面体的性质分析解答【详解】平行六面体中,M为与的交点,,,,则有:,所以.故选:A12、B【解析】自行车前后轮与撑脚分别接触地面,使得自行车稳定,此时自行车与地面的三个接触点不在同一条线上.【详解】自行车前后轮与撑脚分别接触地面,此时三个接触点不在同一条线上,所以可以确定一个平面,即地面,从而使得自行车稳定.故选B项.【点睛】本题考查不共线的三个点确定一个平面,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】推导出极化恒等式,即,结合最小值为,求出最小值.【详解】由题意,取线段AB中点,则,,两式分别平方得:①,②,①-②得:,因为圆心到距离为,所以最小值为,又,故最小值为:.故答案为:14、7【解析】画出约束条件所表示的平面区域,结合图象和直线在轴上的截距,确定目标函数的最优解,代入即可求解.【详解】画出不等式组所表示的平面区域,如图所示,目标函数可化为,当直线过点点时,此时直线在轴上的截距最大,此时目标函数取得最大值,又由,解得,即,所以目标函数的最大值为.故答案为:.15、【解析】利用等比数列的通项公式和前项和公式,即可得到答案.【详解】由题意各项均为正数的等比数列得:,故答案为:16、6【解析】根据经过两点的直线斜率计算公式即可求的参数a﹒【详解】由题意可知,解得故答案为:6三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用双曲线的标准方程直接列不等式组,即可求解;(2)先求出直线l的方程为:,利用“设而不求法”和弦长公式求弦长.【小问1详解】要使曲线:为双曲线,只需,解得:,即的取值范围.【小问2详解】当m=0时,曲线C的方程为,可得,所以右焦点,由题意可得直线l的方程为:.设,联立整理可得:,可得:所以弦长,所以18、(1);(2).【解析】(1)根据给定条件求出数列的公比即可计算得解.(2)由(1)的结论求出,然后利用分组求和方法求解作答.【小问1详解】设等比数列的公比为q,而,且是递增数列,则,,解得,所以数列的通项公式是:.【小问2详解】由(1)知,,,,所以数列的前n项和.19、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【点睛】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误.20、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.21、(1);(2)【解析】(1)利用等差数列以及三角形内角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及两角和与差的三角函数,结合三角函数的最值求解即可【详解】(1)由角A、B、C的度数成等差数列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村盖房子协议书
- 半导体分立器件和集成电路装调工成果考核试卷含答案
- 手工地毯图案工安全操作水平考核试卷含答案
- 毛衫缩毛工安全强化模拟考核试卷含答案
- 营造林技术员诚信道德强化考核试卷含答案
- 数控机加生产线操作工操作管理考核试卷含答案
- 商品监督员安全知识测试考核试卷含答案
- 露酒酿造工安全技能测试知识考核试卷含答案
- 品牌资产评价师创新思维模拟考核试卷含答案
- 磁记录材料涂布工创新方法模拟考核试卷含答案
- 2025年巴楚县辅警招聘考试备考题库附答案
- 老人再婚协议书
- 2025年九江理工职业学院单招职业适应性测试模拟测试卷附答案解析
- 广东省深圳市盐田高级中学2025-2026学年高三上学期12月末测试数学试题(含答案)
- 2025辽宁沈阳盛京资产管理集团有限公司所属子公司沈阳华海锟泰投资有限公司所属子公司招聘5人考试参考题库附答案
- 22为中华之崛起而读书 教学课件
- 2026年安全员之C证(专职安全员)考试题库500道附完整答案【网校专用】
- 2025山东劳动职业技术学院(山东劳动技师学院)招聘8人备考考试试题及答案解析
- 会计师事务所项目经理助理面试题及答案
- 妊娠母体的变化
- 隧道养护工程合同范本
评论
0/150
提交评论