2026届内蒙古自治区北京八中乌兰察布分校数学高二上期末考试模拟试题含解析_第1页
2026届内蒙古自治区北京八中乌兰察布分校数学高二上期末考试模拟试题含解析_第2页
2026届内蒙古自治区北京八中乌兰察布分校数学高二上期末考试模拟试题含解析_第3页
2026届内蒙古自治区北京八中乌兰察布分校数学高二上期末考试模拟试题含解析_第4页
2026届内蒙古自治区北京八中乌兰察布分校数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届内蒙古自治区北京八中乌兰察布分校数学高二上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则等于()A. B.1C.ln2 D.e2.如图,棱长为1的正方体中,为线段上的动点,则下列结论错误的是A.B.平面平面C.的最大值为D.的最小值为3.已知四面体中,,若该四面体的外接球的球心为,则的面积为()A. B.C. D.4.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.5.若数列满足,则()A. B.C. D.6.若是函数的一个极值点,则的极大值为()A. B.C. D.7.若,则()A.22 B.19C.-20 D.-198.如图,在空间四边形OABC中,,,,点N为BC的中点,点M在线段OA上,且OM=2MA,则()A. B.C. D.9.已知直线过抛物线C的焦点,且与C的对称轴垂直,与C交于A,B两点,P为C的准线上一点,若的面积为36,则等于()A.36 B.24C.12 D.610.等差数列的公差为2,若成等比数列,则()A.72 B.90C.36 D.4511.已知直线过点,,则直线的方程为()A. B.C. D.12.设数列的前项和为,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知内角A,B,C的对边为a,b,c,已知,且,则c的最小值为__________.14.已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______15.焦点在轴上的双曲线的离心率为,则的值为___________.16.已知双曲线两焦点之间的距离为4,则双曲线的渐近线方程是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围18.(12分)已知函数在时有极值0.(1)求函数的解析式;(2)记,若函数有三个零点,求实数的取值范围.19.(12分)某市为加强市民对新冠肺炎的知识了解,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),共5人,第2组[25,30),共35人,第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)求a的值;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场宣传活动,且该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有-名志愿者被抽中的概率.20.(12分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值21.(12分)已知椭圆C:的离心率为,,是椭圆的左、右焦点,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C的方程;(2)过点的直线l与椭圆C交于A,B两点,求(O为坐标原点)的面积的最大值22.(10分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求点到平面的距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求导,由得出.【详解】,故选:D2、C【解析】∵,,∴面,面,∴,A正确;∵平面即为平面,平面即为平面,且平面,∴平面平面,∴平面平面,∴B正确;当时,为钝角,∴C错;将面与面沿展成平面图形,线段即为的最小值,在中,,利用余弦定理解三角形得,即,∴D正确,故选C考点:立体几何中的动态问题【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:

求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离3、C【解析】根据四面体的性质,结合线面垂直的判定定理、球的性质、正弦定理进行求解即可.【详解】由图设点为中点,连接,由,所以,面,则面,且,所以球心面,所以平面与球面的截面为大圆,延长线与此大圆交于点.在三角形中,由,所以,由正弦定理知:三角形的外接圆半径为,设三角形的外接圆圆心为点,则面,有,则,设的外接圆圆心为点,则面,由正弦定理知:三角形PAB的外接圆半径为,所以,又三角形中,,所以为的角平分线,则,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中点,由,所以,故选:C.【点睛】关键点睛:运用正弦定理、勾股定理、线面垂直的判定定理是解题的关键.4、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D5、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.6、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D7、C【解析】将所求进行变形可得,根据二项式定理展开式,即可求得答案.【详解】由题意得所以.故选:C8、D【解析】利用空间向量的线性运算即可求解.【详解】解:∵N为BC的中点,点M在线段OA上,且OM=2MA,且,,,故选:D.9、C【解析】设抛物线方程为,根据题意由求解.【详解】设抛物线方程为:,因为直线过抛物线C的焦点,且与C的对称轴垂直,所以,又P为C的准线上一点,所以点P到直线AB的距离为p,所以,解得,所以,故选:C10、B【解析】由题意结合成等比数列,有即可得,进而得到、,即可求.【详解】由题意知:,,又成等比数列,∴,解之得,∴,则,∴,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量1、由成等比,即;2、等差数列前n项和公式的应用.11、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C12、C【解析】利用,把代入中,即可求出答案.【详解】当时,.当时,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先利用正弦定理边化角式子,得到,再利用正弦定理求出,根据与的关系,求得,即可求得c的最小值.【详解】,即,又,当最大时,即,最小,且为由正弦定理得:,当时,c的最小值为故答案为:【点睛】方法点睛:在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)同时出现两个自由角(或三个自由角)时,要用到.14、##【解析】根据题设及双曲线离心率公式可得,结合双曲线离心率的性质即可求离心率.【详解】由题设,,整理得:,所以,而,故.故答案为:.15、【解析】将双曲线的方程化为标准式,可得出、,由此可得出关于的等式,即可解得的值.【详解】双曲线的标准方程为,由题意可得,则,,,所以,,解得.故答案为:.16、.【解析】根据条件求出c,进而根据求出a,最后写出渐近线方程.【详解】因为双曲线两焦点之间的距离为4,所以,解得,所以,,双曲线的渐近线方程是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.18、(1)(2)【解析】(1)求出函数的导函数,由在时有极值0,则,两式联立可求常数a,b的值,从而得解析式;(2)利用导数研究函数的单调性、极值,根据函数图象的大致形状可求出参数的取值范围.【小问1详解】由可得,因为在时有极值0,所以,即,解得或,当时,,函数在R上单调递增,不满足在时有极值,故舍去.所以常数a,b的值分别为.所以.【小问2详解】由(1)可知,,令,解得,当或时,当时,,的递增区间是和,单调递减区间为,当有极大值,当有极小值,要使函数有三个零点,则须满足,解得.19、(1)0.04;(2).【解析】(1)根据频率的计算公式,结合概率之和为1,即可求得参数;(2)根据题意求得抽样比以及第三组和第四组各抽取的人数,再列举所有可能抽取的情况,找出满足题意的情况,利用古典概型的概率计算公式即可求得结果.【小问1详解】第一组频率为,第二组的频率为,则第一组与第二组的频率之和为,又,故.【小问2详解】第3组的人数为,第4组的人数为,第5组的人数为,因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志题者中抽收6名志愿者,每组抽取的人数分别为:第3组:;第4组:;第5组:.记第3组的3名志愿者为,第4组的2名志愿者为,则从5名志愿者中抽取2名志愿者有:,,共有10种其中第3组的3名志愿者至少有一名志愿者被抽中的有:,共9种.所以第3组至少有一名志愿者被抽中的概率为.20、(I)见解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到椭圆C的普通方程为,根据直线参数方程的几何意义求出直线的斜率,从而可得结果;(Ⅱ)把直线的方程,代入中,利用直线参数方程的几何意义求出直线的斜率结合韦达定理可得结果.试题解析:(Ⅰ)消去θ得到椭圆C的普通方程为∵直线的斜率为,∴直线l的倾斜角为(Ⅱ)把直线的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=421、(1);(2)1.【解析】(1)根据给定条件结合列式计算得解.(2)设出直线l的方程,与椭圆C的方程联立,借助韦达定理结合均值不等式计算作答.【小问1详解】椭圆C的半焦距为c,离心率,因过且垂直于x轴的直线被椭圆C截得的弦长为1,将代入椭圆C方程得:,即,则有,解得,所以椭圆C的方程为.【小问2详解】由(1)知,,依题意,直线l的斜率不为0,则设直线l的方程为,,,由消去x并整理得:,,,的面积,,设,,,,当且仅当,时取得“=”,于是得,,所以面积的最大值为1.【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论