版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省紫阳中学2026届高一上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数有唯一零点,则负实数()A. B.C.-3 D.-22.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?(参考数据:)()A.6 B.7C.8 D.94.下列结论中正确的是A.若角的终边过点,则B.若是第二象限角,则为第二象限或第四象限角C.若,则D.对任意,恒成立5.北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是()A.249 B.C.17 D.6.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则7.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且8.已知,,,则a、b、c的大小顺序为()A. B.C. D.9.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2C.0.8 D.0.610.直线l:与圆C:的位置关系是A.相切 B.相离C.相交 D.不确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,若集合A有且仅有2个子集,则a的取值构成的集合为________.12.已知点P(-,1),点Q在y轴上,直线PQ的倾斜角为120°,则点Q的坐标为_____13.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________14.边长为2的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________15.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.16.已知,,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数,在内只取到一个最大值和一个最小值,且当时,;当时,(1)求此函数的解析式;(2)求此函数的单调递增区间18.如图,摩天轮的半径为,点距地面的高度为,摩天轮按逆时针方向作匀速转动,且每转一圈,摩天轮上点的起始位置在最高点.(Ⅰ)试确定点距离地面的高度(单位:)关于转动时间(单位:)的函数关系式;(Ⅱ)摩天轮转动一圈内,有多长时间点距离地面超过?19.(1)已知,求的值;(2)已知,,且,求的值20.如图是函数的部分图像,是它与轴的两个不同交点,是之间的最高点且横坐标为,点是线段的中点.(1)求函数的解析式及上的单调增区间;(2)若时,函数的最小值为,求实数的值.21.已知函数是定义在上的奇函数,且.(1)求实数m,n的值;(2)用定义证明在上是增函数;(3)解关于t的不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】注意到直线是和的对称轴,故是函数的对称轴,若函数有唯一零点,零点必在处取得,所以,又,解得.选C.2、A【解析】根据充分必要条件的定义判断【详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A3、B【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.【详解】解:设经过个小时才能驾驶,则,即,由于在定义域上单调递减,,∴他至少经过11小时才能驾驶.则他次日上午最早7点开车才不构成酒后驾车故选:B4、D【解析】对于A,当时,,故A错;对于B,取,它是第二象限角,为第三象限角,故B错;对于C,因且,故,所以,故C错;对于D,因为,所以,所以,故D对,综上,选D点睛:对于锐角,恒有成立5、C【解析】根据古典概型概率的计算公式直接计算.【详解】由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况,其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749故选:C.6、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.7、A【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【点睛】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题8、D【解析】由对数的运算性质可判断出,而由已知可得,从而可判断出,进而可比较大小详解】由,故,因为,所以,因为,所以,所以,即故选:D9、C【解析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,,则.故选:C.10、C【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断.【详解】圆C:的圆心坐标为:,则圆心到直线的距离,所以圆心在直线l上,故直线与圆相交故选C【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得出方程有唯一实数解或有两个相等的实数解,然后讨论并求解当和时满足题意的参数的值.【详解】∵集合A有且仅有2个子集,可得A中仅有一个元素,即方程仅有一个实数解或有两个相等的实数解.当时,方程化为,∴,此时,符合题意;当时,则由,,令时解方程得,此时,符合题意,令时解方程得,此时符合题意;综上可得满足题意的参数可能的取值有0,-1,1,∴a的取值构成的集合为.故答案为:.【点睛】本题考查了由集合子集的个数求参数的问题,考查了分类讨论思想,属于一般难度的题.12、(0,-2)【解析】设点坐标为,利用斜率与倾斜角关系可知,解得即可.【详解】因为在轴上,所以可设点坐标为,又因为,则,解得,因此,故答案为.【点睛】本题主要考查了直线的斜率计算公式与倾斜角的正切之间的关系,属于基础题.13、①.②.【解析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;14、2【解析】取的中点,连接,,则,则为二面角的平面角点睛:取的中点,连接,,根据正方形可知,,则为二面角的平面角,在三角形中求出的长.本题主要是在折叠问题中考查了两点间的距离.折叠问题要注意分清在折叠前后哪些量发生了变化,哪里量没变15、##【解析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:16、【解析】由诱导公式将化为,再由,根据两角差的正弦公式,即可求出结果.【详解】因,所以,,又,,所以,,所以,,所以.故答案为【点睛】本题主要考查简单的三角恒等变换,熟记两角差的正弦公式以及诱导公式,即可求解,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由函数的最值求得振幅A,利用周期公式求得,根据五点法求,进而求得解析式;(2)依据正弦函数单调区间,列出不等式,解之即可得到函数的单调递增区间【详解】(1)在内函数只取到一个最大值和一个最小值,当时,;当时,,则,函数的最小正周期,则由,可得,则此函数的解析式;(2)由,可得,则函数的单调递增区间为18、(1)(2)【解析】(1)由图形知,以点O为原点,所在直线为y轴,过O且与垂直的向右的方向为x轴建立坐标系,得出点P的纵坐标,由起始位置得即可得出在时刻tmin时P点距离地面的高度的函数;(2)由(1)中的函数,令函数值大于70解不等式即可得出P点距离地面超过70m的时间【详解】(1)建立如图所示的平面直角坐标系,设是以轴正半轴为始边,(表示点的起始位置)为终边的角,由题点的起始位置在最高点知,,又由题知在内转过的角为,即,所以以轴正半轴为始边,为终边的角为,即点纵坐标,所以点距离地面的高度关于旋转时间的函数关系式是,化简得.(2)当时,解得,又,所以符合题意的时间段为或,即在摩天轮转动一圈内,有点距离地面超过.【点睛】本题考查已知三角函数模型的应用问题,解答本题的关键是建立起符合条件的坐标系,得出相应的函数的模型,作出正确的示意图,然后再由三角形中的相关知识进行运算,解三角形的应用一般是求距离(长度问题,高度问题等),解题时要注意综合利用所学的知识与题设中的条件,求解三角形的边与角,本题属于中档题19、(1)(2),【解析】(1)先求得,然后对除以,再分子分母同时除以,将表达式变为只含的形式,代入的值,从而求得表达式的值.(2)利用诱导公式化简已知条件,平方相加后求得的值,进而求得的值,接着求得的值,由此求得的大小.【详解】(1)(2)由已知条件,得,两式求平方和得,即,所以.又因为,所以,把代入得.考虑到,得.因此有,【点睛】本小题主要考查利用齐次方程来求表达式的值,考查利用诱导公式和同角三角函数的基本关系式化简求值,考查特殊角的三角函数值.形如,或者的表达式,通过分子分母同时除以或者,转化为的形式.20、(1)(2)【解析】(1)由点是线段的中点,可得和的坐标,从而得最值和周期,可得和,再代入顶点坐标可得,再利用整体换元可求单调区间;(2)令得到,讨论二次函数的对称轴与区间的位置关系求最值即可.【详解】(1)因为为中点,,所以,,则,,又因为,则所以,由又因为,则所以令又因为则单调递增区间为.(2)因为所以令,则对称轴为①当时,即时,;②当时,即时,(舍)③当时,即时,(舍)综上可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 砖瓦生产中控员班组协作水平考核试卷含答案
- 工程船舶水手操作规程水平考核试卷含答案
- 捞油工保密考核试卷含答案
- 汽轮机和水轮机检修工岗前技术操作考核试卷含答案
- 塑料制品成型制作工班组评比知识考核试卷含答案
- 雕塑翻制工道德竞赛考核试卷含答案
- 小学语文分数考评试卷设计
- 小儿颅内出血的疼痛管理与护理
- 硫磺回收装置培训课件
- 部编版二年级语文古诗词教学方案
- 抢劫案件侦查课件
- 2025中国企业软件出海报告
- 2025年大学《农药化肥-农药残留检测》考试模拟试题及答案解析
- DB14T2163-2020 《信息化项目软件运维费用测算指南》
- 二氧化碳爆破施工技术方案
- 安全生产工作成效总结
- 16《我的叔叔于勒》公开课一等奖创新教学设计
- 骨科备皮课件
- 商品有机肥施肥施工方案
- 2025至2030中国酒店行业市场现状分析及有效策略与实施路径评估报告
- 黑龙江省安全文明施工费管理办法
评论
0/150
提交评论