2026届湖南省示范名校数学高一上期末考试试题含解析_第1页
2026届湖南省示范名校数学高一上期末考试试题含解析_第2页
2026届湖南省示范名校数学高一上期末考试试题含解析_第3页
2026届湖南省示范名校数学高一上期末考试试题含解析_第4页
2026届湖南省示范名校数学高一上期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖南省示范名校数学高一上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.2.集合,,则间的关系是()A. B.C. D.3.函数单调递增区间为A. B.C D.4.比较,,的大小()A. B.C. D.5.过定点(1,0)的直线与、为端点的线段有公共点,则k的取值范围是()A. B.C. D.6.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则7.在下列四组函数中,与表示同一函数的是()A.,B.,C.,D.,8.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)9.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为110.如果角的终边在第二象限,则下列结论正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,且,函数的图象过定点A,A在函数的图象上,且函数的反函数过点,则______.12.有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从___________年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:,)13.已知函数f(x)=π6x,x14.已知函数的图象经过定点,若为正整数,那么使得不等式在区间上有解的的最大值是__________.15.写出一个同时具有下列三个性质函数:________.①;②在上单调递增;③.16.两平行线与的距离是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水面的高度为h(单位:)(在水面下则h为负数).(1)求点P距离水面的高度为h关于时间为t的函数解析式;(2)求点P第一次到达最高点需要的时间(单位:).18.已知函数,.(1)求函数的最小正周期以及单调递增区间;(2)求函数在区间上的最小值及相应的的值.19.已知函数,直线是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若求的值.20.已知函数.(1)当时,求在上的值域;(2)当时,已知,若有,求的取值范围.21.已知函数.(1)求函数的最小正周期及单调递增区间;(2)求函数在区间上的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.2、D【解析】解指数不等式和一元二次不等式得集合,再判断各选项【详解】由题意,或,所以,即故选:D【点睛】本题考查集合的运算与集合的关键,考查解一元二次不等式,指数不等式,掌握指数函数性质是解题关键3、A【解析】,所以.故选A4、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.5、C【解析】画出示意图,结合图形及两点间的斜率公式,即可求解.【详解】作示意图如下:设定点为点,则,,故由题意可得的取值范围是故选:C【点睛】本题考查两点间直线斜率公式的应用,要特别注意,直线与线段相交时直线斜率的取值情况.6、D【解析】,,故选D.考点:点线面的位置关系.7、B【解析】根据题意,先看函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.【详解】对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,但是解析式不一样,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选:B.8、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题9、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D10、B【解析】由题意结合三角函数的性质确定所给结论是否正确即可.【详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误本题选择B选项.【点睛】本题主要考查三角函数符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】由图象平移变换和指数函数的性质可得点A坐标,然后结合反函数的性质列方程组可解.【详解】函数的图象可以由的图象向右平移2各单位长度,再向上平移3个单位长度得到,故点A坐标为,又的反函数过点,所以函数过点,所以,解得,所以.故答案为:812、2021【解析】根据条件列指数函数,再解指数不等式得结果.【详解】设快递行业产生的包装垃圾为万吨,表示从2015年开始增加的年份数,由题意可得,,得,两边取对数可得,∴,得,解得,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为:202113、12##【解析】利用分段函数的解析式,代入求解.【详解】因为函数f(x)=所以f(f(13))=f故答案为:114、【解析】由可得出,由已知不等式结合参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围,即可得解.【详解】由已知可得,则,解得,故,由得,因为,则,可得,令,,则函数在上单调递减,所以,,.因此,正整数的最大值为.故答案:.15、或其他【解析】找出一个同时具有三个性质的函数即可.【详解】例如,是单调递增函数,,满足三个条件.故答案为:.(答案不唯一)16、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(t≥0)(2)【解析】(1)根据题意,建立函数关系式;(2)直接解方程即可求解.【小问1详解】盛水筒M从点P0运动到点P时所经过的时间为t,则以Ox为始边,OP为终边的角为,故P点的纵坐标为,则点离水面的高度,(t≥0).【小问2详解】令,得,得,,得,,因为点P第一次到达最高点,所以,所以.18、(1);;(2);.【解析】(1)利用余弦函数的周期公式计算可得最小正周期,借助余弦函数单调增区间列出不等式求解作答.(2)求出函数的相位范围,再利用余弦函数性质求出最小值作答.【小问1详解】函数中,由得的最小正周期,由,解得,即函数在上单调递增,所以的最小正周期是,单调递增区间是.【小问2详解】当时,,则当,即时,,所以函数的最小值为,此时.19、(1);(2)【解析】(1)首先化简函数,再根据是函数的一条对称轴,代入求,再求函数的单调递增区间;(2)先根据函数图象变换得到,并代入后,得,再利用角的变换求的值.【详解】(1),当时,,得,,,即,令,解得:,,函数的单调递增区间是;(2),,得,,,,【点睛】方法点睛:本题考查函数的图象变换,以及的性质,属于中档题型,的横坐标伸长(或缩短)到原来的倍,得到函数的解析式是,若向右(或左)平移()个单位,得到函数的解析式是或.20、(1);(2).【解析】(1)将方程整理为关于的二次函数,令,利用二次函数的图象与性质求函数的值域;(2)利用换元法及二次函数的性质求出函数在上的值域A,根据对数函数的单调性求出函数在区间上的值域B,根据题意有,根据集合的包含关系列出不等式进行求解.【详解】(1)当,令,设,,函数在上单调递增,,的值域为.(2)设的值域为集合的值域为集合根据题意可得,,令,,,函数在上单调递增,且,,又,所以在上单调递增,,,由得,的取值范围是.【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论