版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省文山州广南二中2026届高一上数学期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.2.已知等比数列满足,,则()A. B.C. D.3.函数图象的一条对称轴是A. B.x=πC. D.x=2π4.已知函数,若,,,则()A. B.C. D.5.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.6.已知直线的方程为,则该直线的倾斜角为A. B.C. D.7.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.8.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.9.已知是上的减函数,那么的取值范围是()A. B.C. D.10.函数零点所在的区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是幂函数,且在上是减函数,则实数__________.12.给出下列四个结论:①函数是奇函数;②将函数的图象向右平移个单位长度,可以得到函数的图象;③若是第一象限角且,则;④已知函数,其中是正整数.若对任意实数都有,则的最小值是4其中所有正确结论的序号是________13.已知函数,则__________.14.已知函数,设,,若成立,则实数的最大值是_______15.已知函数,,若关于x的方程()恰好有6个不同的实数根,则实数λ的取值范围为_______.16.设函数在区间上的最大值和最小值分别为M、m,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在四面体B-ACD中,是正三角形,是直角三角形,,.(1)证明:;(2)若E是BD的中点,求二面角的大小.18.计算下列各式的值:(1)(2)19.某校食堂需定期购买大米已知该食堂每天需用大米吨,每吨大米的价格为6000元,大米的保管费用单位:元与购买天数单位:天的关系为,每次购买大米需支付其他固定费用900元该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠即原价的,该食堂是否应考虑接受此优惠条件?请说明理由20.已知函数,图象上相邻的最高点与最低点的横坐标相差,______;(1)①的一条对称轴且;②的一个对称中心,且在上单调递减;③向左平移个单位得到的图象关于轴对称且从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(2)在(1)的情况下,令,,若存在使得成立,求实数的取值范围.21.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.2、C【解析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.3、C【解析】利用函数值是否是最值,判断函数的对称轴即可【详解】当x时,函数cos2π=1,函数取得最大值,所以x是函数的一条对称轴故选C【点睛】对于函数由可得对称轴方程,由可得对称中心横坐标.4、A【解析】可判断在单调递增,根据单调性即可判断.【详解】当时,单调递增,,,,.故选:A.5、B【解析】所以,所以。故选B。6、B【解析】直线的斜率,其倾斜角为.考点:直线的倾斜角.7、C【解析】由题意得:或,故选C.考点:直线平行的充要条件8、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.9、A【解析】由为上减函数,知递减,递减,且,从而得,解出即可【详解】因为为上的减函数,所以有,解得:,故选:A.10、D【解析】题目中函数较为简单,可以直接求得对应的零点,从而判断所在区间即可【详解】当时,令,即,所以;当时,令,即,,不在定义域区间内,舍所以函数零点所在的区间为故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:212、①②④【解析】直接利用奇函数的定义,函数图象的平移变换,象限角,三角函数的恒等变换以及余弦函数图像的性质即可判断.【详解】对于①,其中,即为奇函数,则①正确;对于②将的图象向右平移个单位长度,即,则②正确;对于③若令,,则,则③不正确;对于④,由题意可知,任意一个长为的开区间上至少包含函数的一个周期,的周期为,则,即,则的最小值是4,则④正确;故答案为:①②④.13、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:14、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:15、【解析】令,则方程转化为,可知可能有个不同解,二次函数可能有个不同解,由恰好有6个不同的实数根,可得有2个不同的实数根,有3个不同的实数根,则,然后根据,,分3种情况讨论即可得答案.【详解】解:令,则方程转化为,画出的图象,如图可知可能有个不同解,二次函数可能有个不同解,因为恰好有6个不同的实数根,所以有2个不同的实数根,有3个不同的实数根,则,因为,解得,,解得,所以,,每个方程有且仅有两个不相等的实数解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,综上,实数λ的取值范围为.故答案为:.16、2【解析】,令,易得函数为奇函数,则,从而可得出答案.【详解】解:,令,因为,所以函数为奇函数,所以,即,所以,即.故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取AC的中点F,连接DF,BF,由等腰三角形的性质,先证平面BFD,再证;(2)连接FE,由(1)可得,,则即为二面角的平面角,进而求解即可【详解】(1)取AC的中点F,连接DF,BF,是正三角形,,又是直角三角形,且,,又,平面BFD,平面BFD,平面BFD,又平面BFD,.(2)连接FE,由(1)平面BFD,平面BFD,平面BFD,,,即为二面角的平面角,设,则,,,在中,,,即是直角三角形,∴,故为正三角形,∴,∴二面角的大小为.【点睛】本题考查线线垂直的证明,考查几何法求二面角,考查运算能力18、(1)(2)【解析】(1)根据指数的运算性质进行求解即可;(2)根据对数的运算性质进行求解即可.【小问1详解】【小问2详解】19、(1)10天购买一次大米;(2)见解析.【解析】根据条件建立函数关系,结合基本不等式的应用求最值即可;求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可【详解】解:设每天所支付的总费用为元,则,当且仅当,即时取等号,则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x,天购买一次大米,平均每天支付的总费用为,则,设,,则在时,为增函数,则当时,有最小值,约为,此时,则食堂应考虑接受此优惠条件【点睛】本题主要考查函数的应用问题,基本不等式的性质以及函数的单调性,属于中档题.20、(1)选①②③,;(2).【解析】(1)根据题意可得出函数的最小正周期,可求得的值,根据所选的条件得出关于的表达式,然后结合所选条件进行检验,求出的值,综合可得出函数的解析式;(2)求得,由可计算得出,进而可得出,由参变量分离法得出,利用基本不等式求得的最小值,由此可得出实数的取值范围.【详解】(1)由题意可知,函数的最小正周期为,.选①,因为函数的一条对称轴,则,解得,,所以,的可能取值为、.若,则,则,不合乎题意;若,则,则,合乎题意.所以,;选②,因为函数的一个对称中心,则,解得,,所以,的可能取值为、.若,则,当时,,此时,函数在区间上单调递增,不合乎题意;若,则,当时,,此时,函数在区间上单调递减,合乎题意;所以,;选③,将函数向左平移个单位得到的图象关于轴对称,所得函数为,由于函数的图象关于轴对称,可得,解得,,所以,的可能取值为、.若,则,,不合乎题意;若,则,,合乎题意.所以,;(2)由(1)可知,所以,,当时,,,所以,,所以,,,,,则,由可得,所以,,由基本不等式可得,当且仅当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年民办学校年检自查报告
- 2025年江苏省无锡市员额检察官遴选考试真题及答案
- 2026年四川紫璞科技有限责任公司招聘备考题库参考答案详解
- 2026年厦门市同安区西塘幼儿园招聘顶岗人员备考题库及完整答案详解1套
- 2026年广州中医药大学第一附属医院重庆医院(重庆市北碚中医院)公开招聘放疗团队7人备考题库及答案详解1套
- 2026年弥勒市市级行政事业单位招聘聘用制工作人员备考题库(截止1月5日上午10:00)附答案详解
- 2026年《山东广播电视报》社公开招聘人员备考题库及1套完整答案详解
- 2026年中储粮油脂工业盘锦有限公司招聘备考题库及参考答案详解1套
- 2026年年领军人才招聘5人备考题库及参考答案详解
- 2026年北自所(北京)科技发展股份有限公司招聘备考题库及答案详解1套
- 全球AI应用平台市场全景图与趋势洞察报告
- 2026.05.01施行的中华人民共和国渔业法(2025修订)课件
- 维持性血液透析患者管理
- 2025年大学大四(临床诊断学)症状鉴别诊断试题及答案
- 2026液态氧储罐泄漏事故应急处置方案
- 直肠解剖课件
- 2025年消控员初级证试题及答案
- 辽宁省丹东市凤城市2024-2025学年八年级上学期1月期末语文试题
- 楼宇智能弱电系统培训资料
- DB11T 290-2005山区生态公益林抚育技术规程
- 开放大学(原电视大学)行政管理实务期末复习资料所有单
评论
0/150
提交评论