2026届江西省高安二中高一上数学期末检测试题含解析_第1页
2026届江西省高安二中高一上数学期末检测试题含解析_第2页
2026届江西省高安二中高一上数学期末检测试题含解析_第3页
2026届江西省高安二中高一上数学期末检测试题含解析_第4页
2026届江西省高安二中高一上数学期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江西省高安二中高一上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.2.如图,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B.C. D.3.已知函数为偶函数,且在上单调递减,则的解集为A. B.C. D.4.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.5.已知函数的定义域为,集合,若中的最小元素为2,则实数的取值范围是:A. B.C. D.6.给出下列命题:①函数为偶函数;②函数在上单调递增;③函数在区间上单调递减;④函数与的图像关于直线对称.其中正确命题的个数是()A.1 B.2C.3 D.47.若函数,则()A. B.C. D.8.某几何体的三视图如图所示(图中小正方形网格的边长为),则该几何体的体积是A. B.C. D.9.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)10.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则__12.若幂函数的图象经过点,则的值等于_________.13.计算:_______14.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.15.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.16.两个球的体积之比为8:27,则这两个球的表面积之比为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我们知道,声音通过空气传播时会引起区域性的压强值改变.物理学中称为“声压”.用P表示(单位:Pa(帕)):“声压级”S(单位:dB(分贝))表示声压的相对大小.已知它与“某声音的声压P与基准声压的比值的常用对数(以10为底的对数)值成正比”,即(k是比例系数).当声压级S提高60dB时,声压P会变为原来的1000倍.(1)求声压级S关于声压P的函数解析式;(2)已知两个不同的声源产生的声压P1,P2叠加后得到的总声压,而一般当声压级S<45dB时人类是可以正常的学习和休息的.现窗外同时有两个声压级为40dB的声源,在不考虑其他因素的情况下,请问这两个声源叠加后是否会干扰我们正常的学习?并说明理由.(参考数据:lg2≈0.3)18.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?19.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.20.已知函数的部分图象如图所示.(1)写出函数f(x)的最小正周期T及ω、φ的值;(2)求函数f(x)在区间上的最大值与最小值.21.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量(单位:)与时间(单位:)函数关系为,当消毒后,测量得药物释放量等于;而实验表明,当药物释放量小于对人体无害(1)求的值;(2)若使用该消毒剂对房间进行消毒,求对人体有害的时间有多长?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.2、A【解析】几何体是一个圆柱,圆柱的底面是一个直径为2的圆,圆柱的高是2,侧面展开图是一个矩形,进而求解.【详解】由三视图可知该几何体是底面半径为1高为2的圆柱,∴该几何体的侧面积为,故选:A【点睛】本题考查三视图和圆柱的侧面积,关键在于由三视图还原几何体.3、B【解析】根据为偶函数,可得;根据在上递减得;然后解一元二次不等式可得【详解】解:为偶函数,所以,即,,由在上单调递减,所以,,可化为,即,解得或故选:【点睛】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.4、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.5、C【解析】本题首先可以求出集合以及集合中所包含的元素,然后通过交集的相关性质以及中的最小元素为2即可列出不等式组,最后求出实数的取值范围【详解】函数,,或者,所以集合,,,,所以集合,因为中的最小元素为2,所以,解得,故选C【点睛】本题考查了集合的相关性质,主要考查了交集的相关性质、函数的定义域、带绝对值的不等式的求法,考查了推理能力与计算能力,考查了化归与转化思想,提升了学生的逻辑思维,是中档题6、C【解析】①函数为偶函数,因为是正确的;②函数在上单调递增,单调增是正确的;③函数是偶函数,在区间上单调递增,故选项不正确;④函数与互为反函数,根据反函数的概念得到图像关于对称.是正确的.故答案为C.7、C【解析】应用换元法求函数解析式即可.【详解】令,则,所以,即.故选:C8、A【解析】利用已知条件,画出几何体的直观图,利用三视图的数据求解几何体的体积即可【详解】由题意可知几何体的直观图如图:是直四棱柱,底面是直角梯形,上底为:1,下底为2,高为2,棱柱的高为2,几何体的体积为:V6故选A【点睛】本题考查几何体的直观图与三视图的关系,考查空间想象能力以及计算能力9、B【解析】求出、,由及零点存在定理即可判断.【详解】,,,则函数的一个零点落在区间上.故选:B【点睛】本题考查零点存在定理,属于基础题.10、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.12、【解析】设出幂函数,将点代入解析式,求出解析式即可求解.【详解】设,函数图像经过,可得,解得,所以,所以.故答案为:【点睛】本题考查了幂函数的定义,考查了基本运算求解能力,属于基础题.13、【解析】求出的值,求解计算即可.【详解】故答案为:14、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:15、##【解析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.16、【解析】设两球半径分别为,由可得,所以.即两球的表面积之比为考点:球的表面积,体积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不会,理由见解析【解析】(1)根据已知条件代入具体数据即可求出参数的值,从而确定解析式(2)将声压级代入解析式求出声压,根据求出叠加后的声压,代入解析式可求出对应的声压级,与45比较大小,判断是否会干扰学习【小问1详解】由题意得:,,所以,所以声压级S关于声压P的函数解析式为【小问2详解】不会干扰我们正常的学习,理由如下:将代入得:,所以,解得:,即所以,代入得:,所以不会干扰我们正常的学习.18、(1)300台;(2)90人.【解析】(1)每台机器人的平均成本为,化简后利用基本不等式求最小值;(2)由(1)可知,引进300台机器人,并根据分段函数求300台机器人日分拣量的最大值,根据最大值求若人工分拣,所需人数,再与30作差求解.【详解】(1)由总成本,可得每台机器人的平均成本.因为.当且仅当,即时,等号成立.∴若使每台机器人的平均成本最低,则应买300台.(2)引进机器人后,每台机器人的日平均分拣量为:当时,300台机器人的日平均分拣量为∴当时,日平均分拣量有最大值144000.当时,日平均分拣量为∴300台机器人的日平均分拣量的最大值为144000件.若传统人工分拣144000件,则需要人数为(人).∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少(人).【点睛】关键点点睛:本题的关键是理解题意,根据实际问题抽象出函数关系,并会求最值,本题最关键的一点时会求的最大值.19、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.20、(1),,;(2)最小值为,最大值为1.【解析】(1)由函数的部分图象求解析式,由周期求出,代入求出的值,可得函数的解析式;(2)由以上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论