云南省剑川县第一中学2026届高二上数学期末监测试题含解析_第1页
云南省剑川县第一中学2026届高二上数学期末监测试题含解析_第2页
云南省剑川县第一中学2026届高二上数学期末监测试题含解析_第3页
云南省剑川县第一中学2026届高二上数学期末监测试题含解析_第4页
云南省剑川县第一中学2026届高二上数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省剑川县第一中学2026届高二上数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.2.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.3.在二面角的棱上有两个点、,线段、分别在这个二面角的两个面内,并且都垂直于棱,若,,,,则这个二面角的大小为()A. B.C. D.4.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.55.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.6.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.47.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.8.在各项都为正数的等比数列中,首项,前3项和为21,则()A.84 B.72C.33 D.1899.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.10.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.11.已知等差数列的前项和为,,,,则的值为()A. B.C. D.12.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠1二、填空题:本题共4小题,每小题5分,共20分。13.已知点P是椭圆上的一点,点,则的最小值为____________.14.若命题P:对于任意,使不等式为真命题,则实数的取值范围是___________.15.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________16.点到抛物线上的点的距离的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短?求此弦长18.(12分)求下列不等式的解集:(1);(2)19.(12分)已知直线l的斜率为-2,且与两坐标轴的正半轴围成三角形的面积等于1.圆C的圆心在第四象限,直线l经过圆心,圆C被x轴截得的弦长为4.若直线x-2y-1=0与圆C相切,求圆C的方程20.(12分)圆的圆心为,且与直线相切,求:(1)求圆的方程;(2)过的直线与圆交于,两点,如果,求直线的方程21.(12分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.22.(10分)在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C2、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C3、C【解析】设这个二面角的度数为,由题意得,从而得到,由此能求出结果.【详解】设这个二面角的度数为,由题意得,,,解得,∴,∴这个二面角的度数为,故选:C.【点睛】本题考查利用向量的几何运算以及数量积研究面面角.4、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B5、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C6、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C7、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C8、A【解析】分析:设等比数列的公比为,根据前三项的和为列方程,结合等比数列中,各项都为正数,解得,从而可以求出的值.详解:设等比数列的公比为,首项为3,前三项的和为,,解之得或,在等比数列中,各项都为正数,公比为正数,舍去),,故选A.点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的性质和前项和等知识点,属于简单题.9、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.10、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B11、A【解析】由可求得,利用可构造方程求得.【详解】,,,,,解得:.故选:A.12、D【解析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,表示出,消去y,利用二次函数求最值即可.【详解】设,则.所以当x=1时,最小.故答案为:.14、【解析】根据题意,结合指数函数不等式,将原问题转化为关于的不等式,对于任意恒成立,即可求解.【详解】根据题意,知对于任意,恒成立,即,化简得,令,,则恒成立,即,解得,故.故答案为:.15、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.16、【解析】设出抛物线上点的坐标,利用两点间距离公式,配方求出最小值.【详解】设抛物线上的点坐标,则,当时,取得最小值,且最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)当时,l被C截得的弦长最短,最短弦长为.【解析】(1)求出直线l的定点,进而判断定点和圆C的位置关系,最后得到答案;(2)当圆心C到直线l的距离最大时,弦长最短,进而求出m,然后根据勾股定理求出弦长.【详解】(1)直线l的方程可化为y+3=2m(x-4),则l过定点P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P在圆内,故直线l与圆C总相交(2)圆的C方程可化为:(x-3)2+(y+6)2=25,如图所示,当圆心C(3,-6)到直线l的距离最大时,弦AB的长度最短,此时PC⊥l,又,所以直线l的斜率为,则,在直角中,|PC|=,|AC|=5,所以|AB|=.故当时,l被C截得的弦长最短,最短弦长为.18、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小问1详解】解:因为,所以,解得,所以不等式的解集是;【小问2详解】因为,所以,所以,即,解得,所以不等式的解集是.19、【解析】先根据题意设直线方程,由条件求出直线的方程,再根据条件列出等量关系,求出圆心和半径,进而求得答案.【详解】解:设直线l的方程为y=-2x+b(b>0),它与两坐标轴的正半轴的交点依次为,,因为直线l与两坐标轴的正半轴所围成的三角形的面积等于1,所以,解得b=2,所以直线l的方程是,即由题意,可设圆C的圆心为,半径为r,又因为圆C被x轴截得的弦长等于4,所以①,由于直线与圆相切,所以圆心C到直线的距离②,所以①②联立得:,解得:或,又圆心在第四象限,所以,则圆心,,所以圆C方程是.20、(1)(2)或【解析】由点到直线的距离公式求得圆的半径,则圆的方程可求;当直线的斜率不存在时,求得弦长为,满足题意;当直线的斜率不存在时,设出直线方程,求出圆心到直线的距离,再由垂径定理列式求,则直线方程可求【小问1详解】由题意得:圆的半径为,则圆的方程为;【小问2详解】当直线的斜率不存在时,直线方程为,得,符合题意;当直线的斜率存在时,设直线方程为,即圆心到直线的距离,则,解得直线的方程为直线的方程为或21、(1),(2)证明见解析,定点【解析】(1)设抛物线的标准方程为,利用点到直线距离公式可求出,再利用焦半径公式可求出N点坐标;(2)设直线的方程为,与抛物线联立,利用韦达定理计算,可得关系,然后代入直线方程可得定点.【小问1详解】设抛物线的标准方程为,,其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论