安徽省六安市舒城干汊河中学2026届高二数学第一学期期末达标检测模拟试题含解析_第1页
安徽省六安市舒城干汊河中学2026届高二数学第一学期期末达标检测模拟试题含解析_第2页
安徽省六安市舒城干汊河中学2026届高二数学第一学期期末达标检测模拟试题含解析_第3页
安徽省六安市舒城干汊河中学2026届高二数学第一学期期末达标检测模拟试题含解析_第4页
安徽省六安市舒城干汊河中学2026届高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省六安市舒城干汊河中学2026届高二数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A192

里 B.96

里C.48

里 D.24

里2.直线的倾斜角是A. B.C. D.3.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得4.七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A. B.C. D.5.已知,,若,则实数的值为()A. B.C. D.6.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.7.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg8.若点P在曲线上运动,则点P到直线的距离的最大值为()A. B.2C. D.49.等差数列前项和,已知,,则的值是().A. B.C. D.10.已知满约束条件,则的最大值为()A.0 B.1C.2 D.311.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.12.在棱长为1的正方体中,为的中点,则点到直线的距离为()A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.__________14.设椭圆标准方程为,则该椭圆的离心率为______15.如图茎叶图记录了A、两名营业员五天的销售量,若A的销售量的平均数比的销售量的平均数多1,则A营业员销售量的方差为___________.16.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若函数与的图象有一条与直线平行的公共切线,求实数a的值18.(12分)中国共产党建党100周年华诞之际,某高校积极响应党和国家的号召,通过“增强防疫意识,激发爱国情怀”知识竞赛活动,来回顾中国共产党从成立到发展壮大的心路历程,表达对建党100周年以来的丰功伟绩的传颂.教务处为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图(1)求值并估计中位数所在区间(2)需要从参赛选手中选出6人代表学校参与省里的此类比赛,你认为怎么选最合理,并说明理由19.(12分)已知为等差数列,前n项和为,数列是首项为1的等比数列,,,.(1)求和的通项公式;(2)求数列的前n项和.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点21.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值22.(10分)为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少?(4)第三组的频数是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得.【详解】由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得,解得,第此人第二天走里.故选:B2、D【解析】由方程得到斜率,然后可得其倾斜角.【详解】因为直线的斜率为所以其倾斜角为故选:D3、B【解析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.4、D【解析】设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设大正方形的边长为,则面积为,阴影部分由一个大等腰直角三角形和一个梯形组成大等腰直角三角形的面积为,梯形的上底为,下底为,高为,面积为,故所求概率故选:D.5、A【解析】由,得,从而可得答案.【详解】解:因为,所以,即,解得.故选:A.6、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.7、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D8、A【解析】由方程确定曲线的形状,然后转化为求圆上的点到直线距离的最大值【详解】由曲线方程为知曲线关于轴成轴对称,关于原点成中心对称图形,在第一象限内,方程化为,即,在第一象限内,曲线是为圆心,为半径的圆在第一象限的圆弧(含坐标轴上的点),实际上整个曲线就是这段圆弧及其关于坐标轴.原点对称的图形加上原点,点到直线的距离为,所以所求最大值为故选:A9、C【解析】由题意,设等差数列的公差为,则,故,故,故选10、B【解析】作出给定不等式表示的平面区域,再借助几何意义即可求出的最大值.【详解】画出不等式组表示的平面区域,如图中阴影,其中,,目标函数,即表示斜率为2,纵截距为的平行直线系,作出直线,平移直线到直线,使其过点A时,的纵截距最小,最大,则,所以的最大值为1.故选:B11、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.12、B【解析】建立空间直角坐标系,利用空间向量点到直线的距离公式进行求解即可【详解】建立如图所示的空间直角坐标系,由已知,得,,,,,所以在上的投影为,所以点到直线的距离为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由题得到,再整体代入化简即得解.【详解】因为,所以,则故答案为【点睛】本题主要考查差角的正切公式,意在考查学生对该知识的理解掌握水平,属于基础题.14、##【解析】求出、的值,即可求得椭圆的离心率.【详解】在椭圆中,,,则,因此,该椭圆的离心率为.故答案为:.15、44【解析】先根据题意求出x的值,进而利用方差公式求出A营业员销售量的方差.【详解】由A的平均数比的平均数多1知,A的总量比的总量多5,所以,A的平均数为17,方差为.故答案为:4416、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或3【解析】设出切点,先求和平行且和函数相切的切线,再将切线和联立,求出的值.【详解】设公共切线曲线上的切点坐标为,根据题意,得公共切线的斜率,所以,所以与函数的图像相切的切点坐标为,故可求出公共切线方程为由直线和函数的图像也相切,得方程,即关于x的方程有两个相等的实数根,所以,解得或318、(1);中位数所在区间(2)选90分以上的人去参赛;答案见解析【解析】(1)根据频率分布直方图中,所有小矩形面积和为1,即可求得a值,根据各组的频率,即可分析中位数所在区间.(2)计算可得之间共有6人,满足题意,分析即可得答案.【小问1详解】,解得成绩在区间上的频率为,,所以中位数所在区间,【小问2详解】选成绩最好的同学去参赛,分数在之间共有人,所以选90分以上的人去参赛.(其它方案如果合理也可以给分)19、(1)的通项公式为,的通项公式为;(2).【解析】(1)用基本量表示题干中的量,联立求解即可;(2)由,,用乘公比错位相减法求和即可.【详解】(1)设等差数列的公差为d,等比数列的公比为q.由已知,得,而,所以,解得,所以.由得.①,由得.②,联立①②解得,所以.故的通项公式为,的通项公式为.(2)设数列的前n项和为,由,得.,,上述两式相减,得,所以,即.20、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,联立方程组y=kx+nx24所以,解得①,设,,,,则②,因为,则,,,又,,所以③,由②③可得(舍或满足条件①,此时直线的方程为,故直线过定点21、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为22、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】频率分布直方图以面积的形式反映数据落在各小组内的频率大小,所以计算面积之比即为所求小组的频率.可用此方法计算(1),(2),由公式直接计算可得(1)中样本容量;根据(2)问中的达标率,可计算不达标率,从而求出不达标人数,可得(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论