版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市2026届数学高一上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆与圆的位置关系是()A.外切 B.内切C.相交 D.外离2.设集合,3,,则正确的是A.3, B.3,C. D.3.已知,则,,的大小关系为()A. B.C. D.4.如果是定义在上的函数,使得对任意的,均有,则称该函数是“-函数”.若函数是“-函数”,则实数的取值范围是()A. B.C. D.5.样本,,,的平均数为,样本,,,的平均数为,则样本,,,,,,,的平均数为A B.C. D.6.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.7.若直线与直线相交,且交点在第一象限,则直线的倾斜角的取值范围是A. B.C. D.8.已知,若,则A.1 B.2C.3 D.49.如图中,分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线是异面直线的图形有()A.①③ B.②③C.②④ D.②③④10.若,则()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图像经过点,则的值为____12.设函数,则____________13.用表示a,b中的较小者,则的最大值是____.14.已知函数且关于的方程有四个不等实根,写出一个满足条件的值________15.奇函数的定义域为,若在上单调递减,且,则实数的取值范围是________________.16.经过原点并且与直线相切于点的圆的标准方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点(1)求的值;(2)若,求的值18.设函数.(1)求关于的不等式的解集;(2)若是偶函数,且,,,求的取值范围.19.已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为.(1)求函数的解析式;(2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若总存在,使得不等式成立,求实数的最小值.20.已知函数是定义域为的奇函数,当时,.(1)求出函数在上解析式;(2)若与有3个交点,求实数的取值范围.21.已知向量=(3,2),=(-1,2),=(4,1)(1)若=m+n,求m,n的值;(2)若向量满足(-)(+),|-|=2,求的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】圆心为和,半径为和,圆心距离为,由于,故两圆相交.2、D【解析】根据集合的定义与运算法则,对选项中的结论判断正误即可【详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确故选D【点睛】本题考查了集合的定义与运算问题,属于基础题3、B【解析】利用函数单调性及中间值比大小.【详解】,且,故,,故.故选:B4、A【解析】根据题中的新定义转化为,即,根据的值域求的取值范围.【详解】,,函数是“-函数”,对任意,均有,即,,即,又,或.故选:A【点睛】关键点点睛:本题考查函数新定义,关键是读懂新定义,并使用新定义,并能转化为函数值域解决问题.5、D【解析】样本,,,的总和为,样本,,,的总和为,样本,,,,,,,的平均数为,选D.6、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.7、C【解析】联立方程得交点,由交点在第一象限知:解得,即是锐角,故,选C.8、A【解析】构造函数,则为奇函数,根据可求得,进而可得到【详解】令,则为奇函数,且,由题意得,∴,∴,∴.故选A【点睛】本题考查运用奇函数的性质求函数值,解题的关键是根据题意构造函数,体现了转化思想在解题中的应用,同时也考查观察、构造的能力,属于基础题9、C【解析】对于①③可证出,两条直线平行一定共面,即可判断直线与共面;对于②④可证三点共面,但平面;三点共面,但平面,即可判断直线与异面.【详解】由题意,可知题图①中,,因此直线与共面;题图②中,三点共面,但平面,因此直线与异面;题图③中,连接,则,因此直线与共面;题图④中,连接,三点共面,但平面,所以直线与异面.故选C.【点睛】本题主要考查异面直线的定义,属于基础题.10、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】因为幂函数,因此可知f()=212、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.13、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.14、(在之间都可以).【解析】画出函数的图象,结合图象可得答案.【详解】如图,当时,,当且仅当时等号成立,当时,,要使方程有四个不等实根,只需使即可,故答案为:(在之间都可以).15、【解析】因为奇函数的定义域为,若在上单调递减,所以在定义域上递减,且,所以解得,故填.点睛:利用奇函数及其增减性解不等式时,一方面要确定函数的增减性,注意奇函数在对称区间上单调性一致,同时还要注意函数的定义域对问题的限制,以免遗漏造成错误.16、【解析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)-2.【解析】(1)先利用三角函数的坐标定义求出,再利用诱导公式求解;(2)求出,再利用差角的正切公式求解.【小问1详解】解:由于角的终边过点,由三角函数的定义可得,则【小问2详解】解:由已知得,则18、(1)当时,;当时,;当时,(2)【解析】(1)分类讨论,解含参一元二次不等式;(2)先根据是偶函数,得到,再,,转化为在上的最小值小于在上的最小值,进行求解.【小问1详解】,令,解得或当时,,的解集是;当时,,的解集是;当时,,的解集是.【小问2详解】因为是偶函数,所以,解得:.设函数,因为在上单调递增,所以.设函数.当时,在上单调递增,则,故,即,结合得:;当时,在上单调递减,则,故,即,结合得:综上,的取值范围为19、(1);(2).【解析】(1)根据相邻两个交点之间的距离为可求出,由图像上一个最高点为可求出,,从而得到函数的解析式;(2)根据三角变换法则可得,再求出在上的最小值,利用对数函数的单调性即可求出实数的最小值【详解】(1)∵,∴,解得.又函数图象上一个最高点为,∴,(),∴(),又,∴,∴(2)把函数的图象向左平移个单位长度,得到;然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,即,∵,∴,,依题意知,,∴,即实数的最小值为.20、(1);(2).【解析】(1)利用函数的奇偶性求出函数的解析式即可(2)与图象交点有3个,画出图象观察,求得实数的取值范围【详解】(1)①由于函数是定义域为的奇函数,则;②当时,,因为是奇函数,所以.所以.综上:.(2)图象如下图所示:单调增区间:单调减区间:.因为方程有三个不同的解,由图象可知,,即2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腾讯游戏账户协议书格式
- 2026年马鞍山师范高等专科学校高职单招职业适应性考试备考试题带答案解析
- 2026年湖南都市职业学院单招职业技能笔试参考题库带答案解析
- 2026年湛江幼儿师范专科学校高职单招职业适应性考试备考题库带答案解析
- 2026年朔州师范高等专科学校高职单招职业适应性测试备考试题带答案解析
- 2026年郑州旅游职业学院高职单招职业适应性考试备考试题带答案解析
- 2026年闽江学院高职单招职业适应性考试参考题库带答案解析
- 2025至2030中国公路货运行业市场行业市场深度研究与战略咨询分析报告
- 2026年青岛工程职业学院单招职业技能笔试模拟试题带答案解析
- 2026年杭州职业技术学院单招职业技能考试备考试题附答案详解
- DB54∕T 0527-2025 西藏自治区好住宅技术标准
- 人形机器人数据训练中心项目规划设计方案
- 2026年内蒙古化工职业学院单招职业适应性考试题库带答案
- 2025年教育系统教师年度考核的个人工作总结
- 2025年留置看护考试题库及答案
- 2025民航华东空管局毕业生招聘58人笔试历年参考题库附带答案详解
- 《怎样选材》课件
- 2025年四川省甘孜教师职称考试(理论知识)在线模拟题库及答案
- 2025四川绵阳市江油鸿飞投资(集团)有限公司招聘40人(公共基础知识)测试题附答案解析
- 2026年河南省职业病诊断医师资格(尘肺病类)高分突破必练试题库(含答案)
- 2026年浙江高考英语题库及答案
评论
0/150
提交评论