版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省“荆、荆、襄、宜四地七校考试联盟”2026届高一数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则2.为了得到函数的图象,只需将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度3.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.5.函数的零点所在的区间为()A.(,1) B.(1,2)C. D.6.函数的大致图象是()A. B.C. D.7.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与8.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.9.已知函数()的部分图象如图所示,则的值分别为A. B.C. D.10.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是定义在上的奇函数,当时,,则______12.函数恒过定点________.13.已知,,向量与的夹角为,则________14.已知,,且,则的最小值为______15.已知函数,若,,则的取值范围是________16.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的最小值和最大值.18.已知函数f(x)=ax2﹣(4a+1)x+4(a∈R).(1)若关于x不等式f(x)≥b的解集为{x|1≤x≤2},求实数a,b的值;(2)解关于x的不等式f(x)>0.19.已知函数,1求的值;2若,,求20.已知,是夹角为的两个单位向量,且向量,求:,,;向量与夹角的余弦值21.计算下列各式的值(1);(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A2、D【解析】根据诱导公式可得,结合三角函数的平移变换即可得出结果.【详解】函数;将函数的图象向左平移个单位长度得到,故选:D3、A【解析】求解出成立的充要条件,再与分析比对即可得解.【详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【点睛】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.4、B【解析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B5、D【解析】为定义域内的单调递增函数,计算选项中各个变量的函数值,判断在正负,即可求出零点所在区间.【详解】解:在上为单调递增函数,又,所以的零点所在的区间为.故选:D.6、A【解析】利用奇偶性定义可知为偶函数,排除;由排除,从而得到结果.【详解】为偶函数,图象关于轴对称,排除又,排除故选:【点睛】本题考查函数图象的识别,对于此类问题通常采用排除法来进行排除,考虑的因素通常为:奇偶性、特殊值和单调性,属于常考题型.7、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A8、B【解析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.9、B【解析】由条件知道:均是函数的对称中心,故这两个值应该是原式子分母的根,故得到,由图像知道周期是,故,故,再根据三角函数的对称中心得到,故如果,根据,得到故答案为B点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法10、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、11【解析】根据奇函数性质求出函数的解析式,然后逐层代入即可.【详解】,,当时,,即,,,故答案为:11.12、【解析】根据函数图象平移法则和对数函数的性质求解即可【详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,因为的图象恒过定点,所以恒过定点,故答案为:13、1【解析】由于.考点:平面向量数量积;14、6【解析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.15、【解析】先利用已知条件,结合图象确定的取值范围,设,即得到是关于t的二次函数,再求二次函数的取值范围即可.【详解】先作函数图象如下:由图可知,若,,设,则,,由知,;由知,;故,,故时,最小值为,时,最大值为,故的取值范围是.故答案为:.【点睛】本题解题关键是数形结合,通过图象判断的取值范围,才能分别找到与相等函数值t的关系,构建函数求值域来突破难点.16、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为..【解析】(1)根据最小正周期的计算公式求解出的最小正周期;(2)先求解出的取值范围,然后根据正弦函数的单调性求解出在区间上的最值.【详解】(1)因为,所以;(2)因为,所以,当时,,此时,当时,,此时,故在区间上的最大值为,最小值为.18、(1)-1,6;(2)答案见详解【解析】(1)由f(x)≥b的解集为{x|1≤x≤2}结合韦达定理即可求解参数a,b的值;(2)原式可因式分解为,再分类讨论即可,对再细分为即可求解.【详解】(1)由f(x)≥b得,因为f(x)≥b的解集为{x|1≤x≤2},故满足,,解得;(2)原式因式分解可得,当时,,解得;当时,的解集为;当时,,①若,即,则的解集为;②若,即时,解得;③若,即时,解得.【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题.19、(Ⅰ)=1;(Ⅱ)=【解析】(1)将代入可得:,在利用诱导公式和特殊角的三角函数值即可;(2)因为,根据两角和的余弦公式需求出和,,,则,根据二倍角公式求出代入即可试题解析:(1)因为,所以;(2)因为,,则所以,考点:1.诱导公式;2.二倍角公式;3.两角和余弦20、(1);(2)【解析】根据,是夹角为的两个单位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可控震源操作工操作能力模拟考核试卷含答案
- 海水鱼类繁育工成果测试考核试卷含答案
- 塑料焊工岗前安全实操考核试卷含答案
- 公共营养师班组建设测试考核试卷含答案
- 印刷设备维修工岗前客户服务考核试卷含答案
- 压力锅制作工创新实践水平考核试卷含答案
- 地毯设计师安全宣贯测试考核试卷含答案
- 药店安全管理培训课件
- 白酒贮酒工QC考核试卷含答案
- 果蔬汁浓缩工达标知识考核试卷含答案
- DB11T 381-2023 既有居住建筑节能改造技术规程
- 计算机应用数学基础 教学 作者 王学军 计算机应用数学课件 第10章 图论
- DF6205电能量采集装置用户手册-2
- 缺血性脑卒中静脉溶栓护理
- 电子电路基础-电子科技大学中国大学mooc课后章节答案期末考试题库2023年
- 四年级科学上册期末试卷及答案-苏教版
- 怀仁县肉牛养殖产业化项目可行性研究报告
- DB51T 2875-2022彩灯(自贡)工艺灯规范
- 主要负责人重大危险源安全检查表
- 《工程经济学》模拟试题答案 东北财经大学2023年春
- 2023-2024学年广西壮族自治区来宾市小学数学五年级下册期末自测试卷
评论
0/150
提交评论