2026届安徽省阜阳市颍上县第二中学高二上数学期末达标检测模拟试题含解析_第1页
2026届安徽省阜阳市颍上县第二中学高二上数学期末达标检测模拟试题含解析_第2页
2026届安徽省阜阳市颍上县第二中学高二上数学期末达标检测模拟试题含解析_第3页
2026届安徽省阜阳市颍上县第二中学高二上数学期末达标检测模拟试题含解析_第4页
2026届安徽省阜阳市颍上县第二中学高二上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省阜阳市颍上县第二中学高二上数学期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,的值域为()A. B.C. D.2.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.3.执行下图所示的程序框图,则输出的值为()A.5 B.6C.7 D.84.已知直线过点,且与直线垂直,则直线的方程为()A. B.C. D.5.若函数在上为单调减函数,则的取值范围()A. B.C. D.6.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.7.直线经过两个定点,,则直线倾斜角大小是()A. B.C. D.8.如图,P是椭圆第一象限上一点,A,B,C是椭圆与坐标轴的交点,O为坐标原点,过A作AN平行于直线BP交y轴于N,直线CP交x轴于M,直线BP交x轴于E.现有下列三个式子:①;②;③.其中为定值的所有编号是()A.①③ B.②③C.①② D.①②③9.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.10.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是()A. B.C. D.11.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.7212.已知函数,则的值为()A. B.C.0 D.1二、填空题:本题共4小题,每小题5分,共20分。13.函数仅有一个零点,则实数的取值范围是_________.14.将边长为2的正方形绕其一边所在的直线旋转一周,所得的圆柱体积为________.15.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________16.某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围18.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.19.(12分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.20.(12分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且______(1)求数列的通项公式;(2)若数列的前n项和为,令,求数列的前n项和21.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数取值范围22.(10分)已知抛物线的焦点为,经过点的直线与抛物线交于两点,其中点A在第一象限;(1)若直线的斜率为,求的值;(2)求线段的长度的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.2、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B3、C【解析】直接按照程序框图运行即可得正确答案.【详解】当时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,成立,输出的值为,故选:C.4、A【解析】求出直线斜率,利用点斜式可得出直线的方程.【详解】直线的斜率为,则直线的斜率为,故直线的方程为,即.故选:A.5、A【解析】分析可知对任意的恒成立,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,则,当时,在上单调递减,在上单调递减,所以,,故.故选:A.6、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D7、A【解析】由两点坐标求出斜率,再得倾斜角【详解】由已知直线的斜率为,所以倾斜角为故选:A8、D【解析】根据斜率的公式,可以得到的值是定值,然后结合已知逐一判断即可.【详解】设,所以有,,因此,所以有,,,,,,故,,.故选:D【点睛】关键点睛:利用斜率公式得到之间的关系是解题的关键.9、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.10、C【解析】根据双曲线的定义求得,利用可得离心率范围【详解】因为,又,所以,,又,即,,所以离心率故选:C11、C【解析】利用等差数列的求和公式结合角标和定理即可求解.【详解】解:等差数列中,所以等差数列的前6项之和为:故选:C.12、B【解析】对函数求导,然后将代入导数中可得结果.【详解】,则,则,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出函数的导函数并且通过导数求出原函数的单调区间,进而得到原函数的极值,因为函数仅有一个零点,所以结合函数的性质可得函数的极大值小于或极小值大于,即可得到答案.【详解】解:由题意可得:函数,所以,令,则或,令,则,所以函数的单调增区间为和,减区间为所以当时函数有极大值,当时函数有极小值,,因为函数仅有一个零点,,所以或,解得或.所以实数的取值范围是故答案为:14、【解析】依题意可得圆柱的底面半径、高,再根据圆柱的体积公式计算可得;【详解】解:依题意可得圆柱的底面半径,高,所以;故答案为:15、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.16、3600【解析】先设分割大房间为间,小房间为间,收益为元,列出约束条件,再根据约束条件画出可行域,设,再利用的几何意义求最值,只需求出直线过可行域内的整数点时,从而得到值即可【详解】解:设装修大房间间,小房间间,收益为万元,则,目标函数,由,解得画出可行域,得到目标函数过点时,有最大值,故应隔出大房间3间和小房间8间,每天能获得最大的房租收益最大,且为3600元故答案为:3600三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再将不等式恒成立转化为求的最小值.18、(1)(2)【解析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列的定义来证明;第二问,将第一问中得到的结论代入,先得到的表达式,利用错位相减法,即可得到数列的前项和为19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成,得.∴,解得,当时,直线BP的方程为,经验证与椭圆C相切,不符合题意;当时,直线BP的方程为,符合题意.∴直线AP得方程为.【点睛】关键点点睛:两条直线关于直线对称,两直线的倾斜角互补,斜率互为相反数.20、(1);(2).【解析】(1)选择不同的条件,再通过构造数列以及累乘法即可求得对应情况下的通项公式;(2)根据(1)中所求,求得,再利用错位相减法求其前项和即可.【小问1详解】选①:∵,即,∴.即,∴数列是常数列,∴,故;选②:∵,∴时,,则,即∴,∴;当时,也满足,∴;选③:得,所以数列是等差数列,首项为2,公差为1则,∴.【小问2详解】由(1)知当时,,∴又∵时,,符合上式,∴∴∴而相减得∴.21、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论