版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市浦东新区建平中学数学高一上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.弧长为3,圆心角为的扇形面积为A. B.C.2 D.2.已知函数,下列关于该函数结论错误的是()A.的图象关于直线对称 B.的一个周期是C.的最大值为 D.是区间上的增函数3.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则4.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.5.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.6.设,是两条不同的直线,,,是三个不同的平面,给出下列命题:①若,,,则;②若,,则;③若,,,则;④若,,则其中正确命题的序号是A.①③ B.①④C.②③ D.②④7.若,是第二象限角,则()A. B.3C.5 D.8.已知定义在R上的函数是奇函数,设,,,则有()A. B.C. D.9.下列各式中成立的是A. B.C. D.10.已知是锐角三角形,,,则A. B.C. D.与的大小不能确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则满足的的取值范围是___________.12.如图所示,正方体的棱长为,线段上有两个动点,且,则下列结论中正确的是_____①∥平面;②平面⊥平面;③三棱锥的体积为定值;④存在某个位置使得异面直线与成角°13.已知函数的图象恒过定点A,若点A在一次函数的图象上,其中,则的最小值为_____________.14.函数y=cos2x-sinx的值域是__________________15.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.现有两名剪纸艺人创作甲、乙两种作品,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名艺人上午创作的甲作品数和乙作品数,点Bi的横、纵坐标分别为第i名艺人下午创作的甲作品数和乙作品数,i=1,①该天上午第1名艺人创作的甲作品数比乙作品数少;②该天下午第1名艺人创作的乙作品数比第2名艺人创作的乙作品数少;③该天第1名艺人创作的作品总数比第2名艺人创作的作品总数少;④该天第2名艺人创作的作品总数比第1名艺人创作的作品总数少.其中所有正确结论序号是___________.16.已知函数定义域为,若满足①在内是单调函数;存在使在上的值域为,那么就称为“半保值函数”,若函数且是“半保值函数”,则的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.18.设是两个不共线的非零向量.(1)若求证:A,B,D三点共线;(2)试求实数k的值,使向量和共线.19.在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的a存在,求a的值;若a不存在,请说明理由.已知集合________,.若“”是“”的充分不必要条件,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数(Ⅰ)若是奇函数,求的值(Ⅱ)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由(Ⅲ)若函数在上是以为上界的函数,求实数的取值范围21.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】弧长为3,圆心角为,故答案为B2、C【解析】利用诱导公式证明可判断A;利用可判断B;利用三角函数的性质可判断C;利用复合函数的单调性可判断D.【详解】对于A,,所以的图象关于直线对称,故A正确;对于B,,所以的一个周期是,故B正确;对于C,,所以的最大值为,当时,,取得最大值,所以的最大值为,故C不正确;对于D,在上单调递增,,在上单调递增,在上单调递减,,根据复合函数的单调性易知,在上单调递增,所以是区间上的增函数,故D正确.故选:C.【点睛】关键点点睛:解决本题的关键是熟练掌握函数对称性及周期性的判定及三角函数的图象与性质.3、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A4、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可5、C【解析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【点睛】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.6、C【解析】由空间中直线与平面的位置关系逐项分析即可【详解】当时,可能平行,也可能相交或异面,所以①不正确;当时,可以平行,也可以相交,所以④不正确;若,,则;若,则,故正确命题的序号是②③.【点睛】本题考查空间中平面与直线的位置关系,属于一般题7、C【解析】由题知,再根据诱导公式与半角公式计算即可得答案.【详解】解:因为,是第二象限角,所以,所以.故选:C8、D【解析】根据函数是奇函数的性质可求得m,再由函数的单调性和对数函数的性质可得选项.【详解】解:因为函数的定义在R上的奇函数,所以,即,解得,所以,所以在R上单调递减,又因为,,所以故选:D.9、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.10、A【解析】分析:利用作差法,根据“拆角”技巧,由三角函数的性质可得.详解:将,代入,,可得,,由于是锐角三角形,所以,,,,所以,,综上,知.故选A点睛:本题主要考查三角函数的性质,两角和与差的三角函数以及作差法比较大小,意在考查学生灵活运用所学知识解答问题的能力,属于中档题.解答本题的关键是运用好“拆角”技巧.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.12、①②③④【解析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,从而得到面ACF⊥平面BEF;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,从而三棱锥E﹣ABF的体积为定值;在④中,令上底面中心为O,得到存在某个位置使得异面直线AE与BF成角30°【详解】由正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,知:在①中,由EF∥BD,且EF⊄平面ABCD,BD⊂平面ABCD,得EF∥平面ABCD,故①正确;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE⊂面BDD1B1,BF⊂面BDD1B1,∴AC⊥平面BEF,∵AC⊂平面ACF,∴面ACF⊥平面BEF,故②正确;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故存在某个位置使得异面直线AE与BF成角30°,故④正确故答案为①②③④【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题13、4【解析】由题意可知定点A(1,1),所以m+n=1,因为,所以,当时,的最小值为4.14、【解析】将原函数转换成同名三角函数即可.【详解】,,当时取最大值,当时,取最小值;故答案为:.15、①②④【解析】根据点的坐标的意义结合图形逐个分析判断即可【详解】对于①,由题意可知,A1的横、纵坐标分别为第1名艺人上午创作的甲作品数和乙作品数,由图可知A1的横坐标小于纵坐标,所以该天上午第对于②,由题意可知,B1的纵坐标为第1名艺人下午创作的乙作品数,B2的纵坐标为第2名艺人下午创作的乙作品数,由图可知B1的纵坐标小于B2的纵坐标,所以该天下午第对于③,④,由图可知,A1,B1的横、纵坐标之和大于A2故答案为:①②④16、【解析】根据半保值函数的定义,将问题转化为与的图象有两个不同的交点,即有两个不同的根,换元后转化为二次方程的实根的分布可解得.【详解】因为函数且是“半保值函数”,且定义域为,由时,在上单调递增,在单调递增,可得为上的增函数;同样当时,仍为上的增函数,在其定义域内为增函数,因为函数且是“半保值函数”,所以与的图象有两个不同的交点,所以有两个不同的根,即有两个不同的根,即有两个不同的根,可令,,即有有两个不同正数根,可得,且,解得.【点睛】本题考查函数的值域的求法,解题的关键是正确理解“半保值函数”,解题时要认真审题,仔细解答,注意合理地进行等价转化三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.18、(1)证明见解析;(2).【解析】(1)利用向量共线定理证明向量与共线即可;(2)利用向量共线定理即可求出【详解】(1)∵,∴//,又有公共点B∴A、B、D三点共线(2)设,化为,∴,解得k=±119、见解析【解析】首先解一元二次不等式求出集合B,依题意B,再根据所选条件得到不等式组,解得即可;【详解】解:由,所以,解得所以.由题意知,A不为空集,选条件①时,,因为“”是“”充分不必要条件,所以B,,则,等号不同时取到,解得.所以实数a的取值范围是.当选条件②时,因为“”是“”的充分不必要条件,所以B,所以,解得.此时,不符合条件故不存在的值满足题意.当选条件③时,因为“”是“”的充分不必要条件,所以B,所以,该不等式组无解,故不存在的值满足题意.20、(1)(2)是(3)或【解析】(1)根据奇函数定义得,解得的值(2)先分离得再根据单调性求值域,最后根据值域判定是否成立(3)转化为不等式恒成立,再分离变量得最值,最后根据最值求实数的取值范围试题解析:解:()由是奇函数,则,得,即,∴,()当时,∵,∴,∴,满足∴在上为有界函数()若函数在上是以为上界的有界函数,则有在上恒成立∴,即,∴,化简得:,即,上面不等式组对一切都成立,故,∴或21、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年天津财经大学珠江学院高职单招职业适应性考试参考题库带答案解析
- Unit 6 A Day in the Life 讲义(无答案) -人教版英语七年级上册
- 【弯道超车】Unit 6 Celebrating the Big Days 核心语法之receive和accept用法解析-2025年仁爱科普版(2024)新七年级英语上册精讲精练
- 数据同步与一致性保障方案
- 会计处理题目及答案
- 2026年山东力明科技职业学院单招职业技能考试模拟试题附答案详解
- 阅读理题目及答案
- 2026年四川电子机械职业技术学院高职单招职业适应性测试备考题库带答案解析
- 2026年长沙南方职业学院高职单招职业适应性测试备考试题带答案解析
- spv公司合作框架协议书
- 期末冲刺备考总动员校长在教师会议上讲话:五字诀精实盯严稳
- 英语1-10-数字课件
- 天津泰达股权激励的案例分析
- 员工用餐登记表
- 毕业设计(论文)-复合轴零件的加工工艺及数控编程
- 保险合同纠纷起诉状
- 教师书法培训教案
- 重庆市大渡口区2023年九年级第一次适应性检测数学试题【含答案】
- MT 236-1991组合钢罐道滚轮罐耳
- LY/T 2488-2015实木拼接板
- GB/T 15543-2008电能质量三相电压不平衡
评论
0/150
提交评论