2026届安徽省滁州市西城区中学高一上数学期末统考试题含解析_第1页
2026届安徽省滁州市西城区中学高一上数学期末统考试题含解析_第2页
2026届安徽省滁州市西城区中学高一上数学期末统考试题含解析_第3页
2026届安徽省滁州市西城区中学高一上数学期末统考试题含解析_第4页
2026届安徽省滁州市西城区中学高一上数学期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省滁州市西城区中学高一上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的大小关系为()A. B.C. D.2.已知向量,,则与的夹角为A. B.C. D.3.已知函数是定义在上的偶函数,当时,,则的值是A. B.C. D.4.函数(且)的图象一定经过的点是()A. B.C. D.5.如图是函数在一个周期内的图象,则其解析式是()A. B.C. D.6.下列四个函数,以为最小正周期,且在区间上单调递减的是()A. B.C. D.7.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.同时掷两枚骰子,所得点数之和为的概率为A. B.C. D.9.函数的零点所在的区间为()A. B.C. D.10.定义在R上的函数满足,且当时,,,若任给,存在,使得,则实数a的取值范围为().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像恒过定点___________12.写出一个同时具有下列性质①②③的函数_________①在R上单调递增;②;③13.当时,的最小值为______14.设是第三象限的角,则的终边在第_________象限.15.已知函数,若函数在区间内有3个零点,则实数的取值范围是______16.已知函数若互不相等,且,则的取值范围是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数区间[0,3]上有最大值4,最小值0(1)求函数的解析式;(2)设.若在时恒成立,求k的取值范围18.已知函数,在同一周期内,当时,取得最大值3;当时,取得最小值.(1)求函数的解析式;(2)求函数的单调减区间;(3)当时,函数有两个零点,求实数m的取值范围.19.已知幂函数为偶函数(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围20.已知点是圆内一点,直线.(1)若圆的弦恰好被点平分,求弦所在直线的方程;(2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值;(3)若,是上的动点,过作圆的两条切线,切点分别为.证明:直线过定点.21.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先对三个数化简,然后利用指数函数的单调性判断即可【详解】,,,因为在上为增函数,且,所以,所以,故选:B2、C【解析】利用夹角公式进行计算【详解】由条件可知,,,所以,故与的夹角为故选【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题3、B【解析】根据偶函数性质的,再代入对应解析式得结果.【详解】因为函数是定义在上的偶函数,所以,选B.【点睛】本题考查偶函数应用,考查基本转化求解能力,属于基础题.4、D【解析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【详解】由函数解析式,知:当时,,即函数必过,故选:D.【点睛】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.5、B【解析】通过函数的图象可得到:A=3,,,则,然后再利用点在图象上求解.,【详解】由函数的图象可知:A=3,,,所以,又点在图象上,所以,即,所以,即,因为,所以所以故选:B【点睛】本题主要考查利用三角函数的图象求解析式,还考查了运算求解的能力,属于中档题.6、A【解析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断.【详解】最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递增;最小正周期为,在区间上单调递增;故选:A7、B【解析】根据充分条件、必要条件的概念判断即可.【详解】若,则成立,即必要性成立,反之若,则不成立,所以“”是“”的必要不充分条件.故选:B.8、A【解析】本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6种结果,而满足条件的事件是两个点数之和是5,列举出有4种结果,根据概率公式得到结果.【详解】由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是5,列举出有(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P=.【点睛】古典概型要求能够列举出所有事件和满足条件的事件发生的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体9、C【解析】分析函数的单调性,再利用零点存在性定理判断作答.【详解】函数的定义域为,且在上单调递增,而,,所以函数的零点所在的区间为.故选:C10、D【解析】求出在,上的值域,利用的性质得出在,上的值域,再求出在,上的值域,根据题意得出两值域的包含关系,从而解出的范围【详解】解:当时,,可得在,上单调递减,在上单调递增,在,上的值域为,,在上的值域为,,在上的值域为,,,,在上的值域为,,当时,为增函数,在,上的值域为,,,解得;当时,为减函数,在,上的值域为,,,解得;当时,为常数函数,值域为,不符合题意;综上,的范围是或故选:【点睛】本题考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则值域是值域的子集二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.12、(答案不唯一,形如均可)【解析】由指数函数的性质以及运算得出.【详解】对函数,因在R上单调递增,所以在R上单调递增;,.故答案为:(答案不唯一,形如均可)13、【解析】将所求代数式变形为,利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当即时等号成立,所以的最小值为,故答案为:.14、二或四【解析】根据是第三象限角,得到,,再得到,,然后讨论的奇偶可得答案.【详解】因为是第三象限角,所以,,所以,,当为偶数时,为第二象限角,当为奇数时,为第四象限角.故答案为:二或四.15、【解析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【点睛】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题16、(10,12)【解析】不妨设a<b<c,作出f(x)的图象,如图所示:由图象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即−lga=lgb,∴lgab=0,则ab=1,∴abc=c,∴abc的取值范围是(10,12),三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式(2)求解的解析式,令,则,问题转化为当u∈[,8]时,恒成立,分离参数即可求解【详解】(1)其对称轴x=1,x∈[0,3]上,∴当x=1时,取得最小值为﹣m+n+1=0①当x=3时,取得最大值为3m+n+1=4②由①②解得:m=1,n=0,故得函数的解析式为:;(2)由,令,,则,问题转化为当u∈[,8]时,恒成立,即u2﹣4u+1﹣ku2≤0恒成立,∴k设,则t∈[,8],得:1﹣4t+t2=(t﹣2)2﹣3≤k当t=8时,(1﹣4t+t2)max=33,故得k的取值范围是[33,+∞).18、(1);(2);(3).【解析】(1)根据函数在同一周期的最值,确定最小正周期和,再由最大值求出,即可得出函数解析式;(2)根据正弦函数的单调递减区间列出不等式求解,即可得出结果;(3)根据自变量的范围,先确定的范围及单调性,根据函数有两个零点,推出函数与直线有两不同交点,进而可得出结果.【详解】(1)因为函数,在同一周期内,当时,取得最大值3;当时,取得最小值,,,则,所以;又,所以,解得,又,所以,因此;(2)由,解得,∴函数的单调递减区间为;(3)由,解得,即函数的单调递增区间为;,所以在区间上单调递增,在上单调递增;所以,,,又有两个零点,等价于方程有两不等实根,即函数与直线有两不同交点,因此,只需,解得,即实数的取值范围是【点睛】思路点睛:已知含三角函数的函数在给定区间的零点个数求参数时,一般需要分离参数,将问题转化为三角函数与参数对应的直线交点问题求解,利用三角函数的性质,确定其在给定区间的单调性与最值等,即可求解(有时需要利用数形结合的方法求解).19、(1);(2)或.【解析】(1)由为幂函数知,得或又因为函数为偶函数,所以函数不符合舍去当时,,符合题意;.(2)由(1)得,即函数的对称轴为,由题意知在(2,3)上为单调函数,所以或,即或.20、(1)(2)11(3)见解析【解析】(1)由题意知,易知,进而得到弦所在直线的方程;(2)设点到直线、的距离分别为,则,,利用条件二元变一元,转为二次函数最值问题;(3)设.该圆的方程为,利用C、D在圆O:上,求出CD方程,利用直线系求解即可试题解析:(1)由题意知,∴,∵,∴,因此弦所在直线方程为,即.(2)设点到直线、的距离分别为,则,,.∴,,当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论