版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省内江市球溪中学2026届数学高二上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.2.已知是抛物线上的点,F是抛物线C的焦点,若,则()A1011 B.2020C.2021 D.20223.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:34.下列直线中,倾斜角为锐角的是()A. B.C. D.5.已知,,则的最小值为()A. B.C. D.6.已知数列满足:,,则()A. B.C. D.7.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”8.如图1所示,抛物面天线是指由抛物面(抛物线绕其对称轴旋转形成的曲面)反射器和位于其焦点上的照射器(馈源,通常采用喇叭天线)组成的单反射面型天线,广泛应用于微波和卫星通讯等,具有结构简单、方向性强、工作频带宽等特点.图2是图1的轴截面,,两点关于抛物线的对称轴对称,是抛物线的焦点,是馈源的方向角,记为.焦点到顶点的距离与口径的比为抛物面天线的焦径比,它直接影响天线的效率与信噪比等.若馈源方向角满足,则该抛物面天线的焦径比为()A. B.C. D.29.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.11.某商场为了解销售活动中某商品销售量与活动时间之间的关系,随机统计了某次销售活动中的商品销售量与活动时间,并制作了下表:活动时间销售量由表中数据可知,销售量与活动时间之间具有线性相关关系,算得线性回归方程为,据此模型预测当时,的值为()A B.C. D.12.直线的方向向量为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l的方向向量,平面的法向量,若,则______14.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______15.设空间向量,且,则___________.16.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.18.(12分)如图,四棱锥中,,.(1)证明:平面;(2)在线段上是否存在一点,使直线与平面所成角的正弦值等于?19.(12分)设函数(1)求函数的单调区间;(2)若有两个零点,,求的取值范围,并证明:20.(12分)求满足下列条件的曲线的方程:(1)离心率为,长轴长为6的椭圆的标准方程(2)与椭圆有相同焦点,且经过点的双曲线的标准方程21.(12分)排一张有6个歌唱节目和5个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?22.(10分)已知椭圆的两焦点为、,P为椭圆上一点,且(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题2、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C3、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.4、A【解析】先由直线方程找到直线的斜率,再推导出直线的倾斜角即可.【详解】选项A:直线的斜率,则直线倾斜角为,是锐角,判断正确;选项B:直线的斜率,则直线倾斜角为钝角,判断错误;选项C:直线的斜率,则直线倾斜角为0,不是锐角,判断错误;选项D:直线没有斜率,倾斜角为直角,不是锐角,判断错误.故选:A5、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.6、A【解析】由a1=3,,利用递推思想,求出数列的前11项,推导出数列{an}从第6项起是周期为3的周期数列,由此能求出a2022【详解】解:∵数列{an}满足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴数列{an}从第6项起是周期为3的周期数列,∵2022=5+672×3+1,∴a2022=a6=4故选:A7、C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.8、B【解析】建立平面直角坐标系,利用题设条件得到得点坐标,代入抛物线方程化简即可求解【详解】建立如图所示的平面直角坐标系,设抛物线的方程为()在中,则所以则所以,所以将代入抛物线方程中得所以或即或(舍)当时,故选:B9、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C10、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A11、C【解析】求出样本中心点的坐标,代入回归直线方程,求出的值,再将代入回归方程即可得解.【详解】由表格中的数据可得,,将样本中心点的坐标代入回归直线方程可得,解得,所以,回归直线方程为,故当时,.故选:C.12、D【解析】根据直线方程,求得斜率k,分析即可得直线的方向向量.【详解】直线变形可得,所以直线的斜率,所以向量为直线的一个方向向量,因为,所以向量为直线的方向向量,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,可得∥,从而可得,代入坐标列方程可求出,从而可求出【详解】因为直线l的方向向量,平面的法向量,,所以∥,所以存在唯一实数,使,所以,所以,解得,所以,故答案为:14、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:15、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:116、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,分别求得平面的一个法向量和平面的一个法向量,设二面角的大小为,由求解.【小问1详解】解:因为,,,所以,,又,所以是等腰直角三角形,即,所以.由平面几何知识易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小问2详解】由(1)知,,两两垂直,以,,的方向分别为,,轴的正方向,建立如图所示的空间直角坐标系,设,则,,,,F(1,0,0),则,,设平面的一个法向量为,由,得,取,则.由,,,得平面,所以平面的一个法向量为,设二面角的大小为,则,由图可知二面角为钝二面角,所以二面角的余弦值为.18、(1)详解解析;(2)存在.【解析】(1)利用勾股定理证得,结合线面垂直的判定定理即可证得结论;(2)以A为原点建立空间直角坐标系,设点,,求得平面的法向量,利用已知条件建立关于的方程,进而得解.【小问1详解】取中点为,连接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小问2详解】以A为坐标原点,以为x轴,为y轴,为z轴建立空间直角坐标系,则,,,,设点,因为点F在线段上,设,,,设平面的法向量为,,,则,令,则,设直线CF与平面所成角为,,解得或(舍去),,此时点F是的三等分点,所以在线段上是存在一点,使直线与平面所成角的正弦值等于.19、(1)答案见详解(2),证明见解析【解析】(1)求导得,,分类讨论参数a的范围即可判断单调区间;(2)设,,联立整理得,构造得,构造函数,结合导数判断单调性,进而得证.小问1详解】由,,可得,当时,,所以在上单调递增;当时,令,得,令,得所以在单调递减,在单调递增;【小问2详解】证明:因为函数有两个零点,由(1)得,此时的递增区间为,递减区间为,有极小值.所以,可得,所以.由(1)可得的极小值点为,则不妨设.设,,则则,即,整理得,所以,设,则,所以在上单调递减,所以,所以,即.20、(1)或;(2)【解析】(1)根据题意,由椭圆的几何性质可得a、c的值,计算可得b的值,讨论椭圆焦点的位置,求出椭圆的标准方程,即可得答案;(2)根据题意,求出椭圆的焦点坐标,进而可以设双曲线的方程为,分析可得和,解可得a、b的值,即可得答案【详解】解:(1)根据题意,要求椭圆的长轴长为6,离心率为,则,,解可得:,;则,若椭圆的焦点在x轴上,其方程为,若椭圆的焦点在y轴上,其方程为,综合可得:椭圆的标准方程为或;(2)根据题意,椭圆的焦点为和,故要求双曲线的方程为,且,则有,又由双曲线经过经过点,则有,,联立可得:,故双曲线方程为:【点睛】本题考查椭圆、双曲线的标准方程的求法,涉及椭圆、双曲线的几何性质,属于基础题21、(1)(2)【解析】(1)用插空法,现排唱歌,利用产生的空排跳舞;(2)先排唱歌再排舞蹈.【小问1详解】解:先排歌唱节目有种,歌唱节目之间以及两端共有7个空位,从中选5个放入舞蹈节目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路水运安全考核试题及答案2025新版
- 2026年闽南理工学院单招职业技能考试模拟试题带答案解析
- 2026年吉林铁道职业技术学院高职单招职业适应性考试备考题库有答案解析
- 2025年小学诗词大赛题库及答案
- 2026年武威职业学院高职单招职业适应性测试参考题库有答案解析
- 2025年临湘事业单位真题
- 2026年泉州华光职业学院单招综合素质考试备考题库带答案解析
- 2025年山东省青岛市政府采购评审专家考试真题含答案
- 国标充电枪协议书
- 沧州市中心医院选聘人才考试真题2025
- 弘扬工匠精神课件
- 2025中级客房服务员资格考试题库及答案(浓缩300题)
- 业务技术用房维修改造项目信息化工程投标方案(技术标)
- 大中型企业安全生产标准化管理体系要求变化解读
- 2022埋地输水钢管设计与施工技术规范
- 2025届高考数学二轮复习备考策略和方向
- UL1995标准中文版-2018加热和冷却设备UL中文版标准
- 2024至2030年中国家用燃气具数据监测研究报告
- 2024版租房合同协议书下载
- 宝宝喂养记录表
- 丹鹿通督片治疗腰椎疾病所致腰椎狭窄128例
评论
0/150
提交评论