版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省苍溪中学数学高二上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知方程表示双曲线,则实数的取值范围是()A.或 B.C. D.2.已知点,在双曲线上,线段的中点,则()A. B.C. D.3.已知向量,,且与互相平行,则的值为()A.-2 B.C. D.4.设是公差的等差数列,如果,那么()A. B.C. D.5.设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.若,则的虚部为()A. B.C. D.7.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数的个数为()A.48 B.36C.24 D.188.已知是虚数单位,若复数满足,则()A. B.2C. D.49.过双曲线-=1(a>0,b>0)的左焦点F(-c,0)作圆O:x2+y2=a2的切线,切点为E,延长FE交双曲线于点P,若E为线段FP的中点,则双曲线的离心率为()A. B.C.+1 D.10.某班对期中成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,……,60进行编号,然后从随机数表第9行第5列的数1开始向右读,则选出的第6个个体是()(注:如下为随机数表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.5211.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形12.已知动点在直线上,过点作圆的切线,切点为,则线段的长度的最小值为()A. B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数仅有一个零点,则实数的取值范围是_________.14.已知为抛物线:的焦点,为抛物线上在第一象限的点.若为的中点,为抛物线的顶点,则直线斜率的最大值为______.15.已知为抛物线上任意一点,为抛物线的焦点,为平面内一定点,则的最小值为__________.16.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列的前n项和为,已知(1)求的通项公式;(2)若,求n的最小值18.(12分)已知点,圆(1)若过点的直线与圆相切,求直线的方程;(2)若直线与圆相交于A,两点,弦的长为,求的值19.(12分)设,为双曲线:(,)的左、右顶点,直线过右焦点且与双曲线的右支交于,两点,当直线垂直于轴时,△为等腰直角三角形(1)求双曲线的离心率;(2)若双曲线左支上任意一点到右焦点点距离的最小值为3,①求双曲线方程;②已知直线,分别交直线于,两点,当直线倾斜角变化时,以为直径的圆是否过轴上的定点,若过定点,求出定点的坐标;若不过定点,请说明理由20.(12分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.21.(12分)设椭圆过,两点,为坐标原点(1)求椭圆的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,,且?若存在,写出该圆的方程,并求的取值范围;若不存在,说明理由22.(10分)如图,在直三棱柱中,,,,,分别为,的中点(1)求证:;(2)求直线与平面所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A2、D【解析】先根据中点弦定理求出直线的斜率,然后求出直线的方程,联立后利用弦长公式求解的长.【详解】设,,则可得方程组:,两式相减得:,即,其中因为的中点为,故,故,即直线的斜率为,故直线的方程为:,联立,解得:,由韦达定理得:,,则故选:D3、A【解析】应用空间向量坐标的线性运算求、的坐标,根据空间向量平行有,即可求的值.【详解】由题设,,,∵与互相平行,∴且,则,可得.故选:A4、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.5、A【解析】根据两直线平行的充要条件求出a的值,然后可判断.【详解】当时,,所以两直线平行;若两直线平行,则且,解得或,所以,“”是“直线与直线平行”的充分不必要条件.故选:A6、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A7、B【解析】直接利用乘法分步原理分三步计算即得解.【详解】从中选一个数字,有种方法;从中选两个数字,有种方法;组成无重复数字的三位数,有个.故选:B8、C【解析】先求出,然后根据复数的模求解即可【详解】,,则,故选:C9、A【解析】设F′为双曲线的右焦点,连接OE,PF′,根据圆的切线性质和三角形中位线得到|OE|=a,|PF′|=2a,利用双曲线的定义求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立关系即可求得离心率的值.【详解】不妨设E在x轴上方,F′为双曲线的右焦点,连接OE,PF′,如图所示:因为PF是圆O的切线,所以OE⊥PE,又E,O分别为PF,FF′的中点,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根据双曲线的定义,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故选A.【点睛】本题考查双曲线的离心率的求法,联想到双曲线的另一个焦点,作辅助线,利用双曲线的定义是求解离心率问题的有效方法.10、D【解析】从指定位置起依次读两位数码,超出编号的数删除.【详解】根据题意,从随机数表第9行第5列的数1开始向右读,依次选出的号码数是:12,34,29,56,07,52;所以第6个个体是52.故选:D.11、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.12、A【解析】求出的最小值,由切线长公式可结论【详解】解:由,得最小时,最小,而,所以故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出函数的导函数并且通过导数求出原函数的单调区间,进而得到原函数的极值,因为函数仅有一个零点,所以结合函数的性质可得函数的极大值小于或极小值大于,即可得到答案.【详解】解:由题意可得:函数,所以,令,则或,令,则,所以函数的单调增区间为和,减区间为所以当时函数有极大值,当时函数有极小值,,因为函数仅有一个零点,,所以或,解得或.所以实数的取值范围是故答案为:14、1【解析】由题意,可得,设,,,根据是线段的中点,求出的坐标,可得直线的斜率,利用基本不等式即可得结论【详解】解:由题意,可得,设,,,,是线段的中点,则,,,当且仅当时取等号,直线的斜率的最大值为1故答案为:115、3【解析】利用抛物线的定义,再结合图形即求.【详解】由题可得抛物线的准线为,设点在准线上的射影为,则根据抛物线的定义可知,∴要求取得最小值,即求取得最小,当三点共线时最小,为.故答案为:3.16、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)12【解析】(1)设的公差为d,根据题意列出方程组,求得的值,即可求解;(2)利用等差数的求和公式,得到,结合的单调性,即可求解.【小问1详解】解:设的公差为d,因为,可得,解得,所以,即数列的通项公式为【小问2详解】解:由,可得,根据二次函数的性质且,可得单调递增,因为,所以当时,,故n的最小值为1218、(1)或;(2)【解析】(1)分直线斜率存在和不存在两种情况分析,当当过点的直线存在斜率时,设方程为,利用圆心到直线的距离等于半径求得k,即可得出答案;(2)求出圆心到直线的距离,再根据圆的弦长公式即可得出答案.【详解】解:(1)由题意知圆心的坐标为,半径,当过点的直线斜率不存在时,方程为,由圆心到直线的距离知,直线与圆相切,当过点的直线存在斜率时,设方程为,即由题意知,解得,直线的方程为故过点的圆的切线方程为或(2)圆心到直线的距离为,,解得19、(1);(2)①;②定点有两个,【解析】(1)由双曲线方程有、、,根据已知条件有,即可求离心率.(2)①由题设有,结合(1)求双曲线参数,写出双曲线方程即可;②由题设可设为,,,联立双曲线方程结合韦达定理求,,,,再由、的方程求,坐标,若在为直径的圆上点,由结合向量垂直的坐标表示列方程,进而求出定点坐标.【小问1详解】由题设,若,且,又△为等腰直角三角形,∴,即,则又,可得.【小问2详解】由题设,,由(1)有,则,即,①由上可知:双曲线方程为.②由①知:,且直线的斜率不为0,设为,,,联立直线与双曲线得:,∴,,则,∴,∴直线为;直线为;∴,,若在为直径的圆上点,∴,且,∴,令,则,∴,即,∴或,即过定点.【点睛】关键点点睛:第二问的②,设直线为,联立直线与双曲线,应用韦达定理求,,,,进而根据、的方程求,坐标,再由圆的性质及向量垂直的坐标表示求定点坐标.20、(1);(2).【解析】(1)利用,结合已知条件,即可容易求得通项公式;(2)根据(1)中所求,对数列进行裂项求和,即可求得.【小问1详解】当时,.当时,,因为当时,,所以.【小问2详解】因为,所以,故数列的前项和.21、(1)(2)存在,,【解析】(1)根据椭圆E:()过,两点,直接代入方程解方程组,解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在;在该圆的方程存在时,利用弦长公式结合韦达定理得到,结合题意求解即可,当切线斜率不存在时,验证即可.【小问1详解】将,的坐标代入椭圆的方程得,解得,所以椭圆的方程为【小问2详解】假设满足题意的圆存在,其方程为,其中,设该圆的任意一条切线和椭圆交于,两点,当直线的斜率存在时,令直线的方程为,①将其代入椭圆的方程并整理得,由韦达定理得,,②因为,所以,③将①代入③并整理得,联立②得,④因为直线和圆相切,因此,由④得,所以存在圆满足题意当切线的斜率不存在时,易得,由椭圆方程得,显然,综上所述,存在圆满足题意当切线的斜率存在时,由①②④得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年建筑物裂缝分析与处理
- 2026春招:新材料笔试题及答案
- 2026年桥梁景观设计中的视觉引导策略
- 智能穿戴设备在康复护理中的应用
- 护理信息化建设挑战与对策
- 货梯安全培训内容记录课件
- 2026年桂林山水职业学院单招综合素质考试模拟试题带答案解析
- 专科护士培养与职业发展
- 2026年安徽水利水电职业技术学院高职单招职业适应性测试模拟试题带答案解析
- 医疗影像增强与图像处理技术
- 银行资产保全业务管理办法
- 《接触(触针)式表面轮廓测量仪校准规范》
- 2024版强弱电安装合同范本
- 会泽殡葬改革实施方案
- 《数据库设计》课件
- 牵引供电计算专题(面向交流)
- 杭州市失业人员登记表
- 新员工入职背景调查表 (职员)
- 云计算环境下中小企业会计信息化建设问题
- 15D501建筑物防雷设施安装图集
- 社区老人心理疏导服务记录表
评论
0/150
提交评论