版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省佳木斯市建三江管理局第一中学高一上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角与角的终边关于直线对称,且,则等于()A. B.C. D.2.若,,则等于()A. B.C. D.3.A. B.C.2 D.44.在正内有一点,满足等式,,则()A. B.C. D.5.下列函数中,最小值是的是()A. B.C. D.6.当时,的最大值为()A. B.C. D.7.已知一几何体的三视图,则它的体积为A. B.C. D.8.若,,,则a,b,c的大小关系为()A. B.C. D.9.已知全集,集合1,2,3,,,则A.1, B.C. D.3,10.某同学用“五点法”画函数在一个周期内的简图时,列表如下:0xy0200则的解析式为()A. B.C D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若方程恰有个不同的实数解、、、,且,则______12.函数在上的最小值为__________.13.函数(且)的图象必经过点___________.14.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___15.设函数f(x)=,则f(-1)+f(1)=______16.的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知a,b为正实数,且.(1)求a2+b2的最小值;(2)若,求ab的值18.(附加题,本小题满分10分,该题计入总分)已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质(1)若,判断是否具有性质,说明理由;(2)若函数具有性质,试求实数的取值范围19.已知函数(,)(1)若关于的不等式的解集为,求不等式的解集;(2)若,,求关于的不等式的解集20.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、21.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先在角终边取一点,利用角与角的终边关于直线对称写出对称点的坐标,即可求得,进而求得.【详解】由知角终边在第一或第二象限,在终边上取一点或,又角与角的终边关于直线对称,故角的终边必过点或,故,则.故选:A.2、D【解析】根据三角函数的诱导公式即可化简求值.【详解】∵,,,,,.故选:D.3、D【解析】因,选D4、A【解析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.5、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.6、B【解析】利用基本不等式直接求解.【详解】,,又,当且仅当,即时等号成立,所以的最大值为故选:B7、C【解析】所求体积,故选C.8、A【解析】根据指数函数和对数函数的单调性进行判断即可.【详解】∵,∴,∴,,,∴.故选:A9、C【解析】可求出集合B,然后进行交集的运算,即可求解,得到答案【详解】由题意,可得集合,又由,所以故选C【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合B,熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解析】由表格中的五点,由正弦型函数的性质可得、、求参数,即可写出的解析式.【详解】由表中数据知:且,则,∴,即,又,可得.∴.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的图象以及直线的图象,利用对数的运算可求得的值,利用正弦型函数的对称性可求得的值,即可得解.【详解】作出函数的图象以及直线的图象如下图所示:由图可知,由可得,即,所以,,可得,当时,,由,可得,由图可知,点、关于直线对称,则,因此,.故答案为:.12、【解析】正切函数在给定定义域内单调递增,则函数的最小值为.13、【解析】令得,把代入函数的解析式得,即得解.【详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:14、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.15、3【解析】直接利用函数的解析式,求函数值即可【详解】函数f(x)=,则==3故答案为3【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力16、【解析】根据特殊角的三角函数值与对数的运算性质计算可得;【详解】解:故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)1.【解析】(1)根据和可得结果;(2)由得,将化为解得结果即可.【详解】(1)因为a,b为正实数,且,所以,即ab≥(当且仅当a=b时等号成立)因为(当且仅当a=b时等号成立),所以a2+b2的最小值为1.(2)因为,所以,因为,所以,即,所以(ab)2-2ab+1≤0,(ab-1)2≤0,因为,所以ab=1.【点睛】本题考查了利用基本不等式求最值,属于基础题.18、(Ⅰ)具有性质;(Ⅱ)或或【解析】(Ⅰ)具有性质.若存在,使得,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根.设,即在上有且只有一个零点.讨论的取值范围,结合零点存在定理,即可得到的范围试题解析:(Ⅰ)具有性质依题意,若存在,使,则时有,即,,.由于,所以.又因为区间内有且仅有一个,使成立,所以具有性质5分(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根设,即在上有且只有一个零点解法一:(1)当时,即时,可得在上为增函数,只需解得交集得(2)当时,即时,若使函数在上有且只有一个零点,需考虑以下3种情况:(ⅰ)时,在上有且只有一个零点,符合题意(ⅱ)当即时,需解得交集得(ⅲ)当时,即时,需解得交集得(3)当时,即时,可得在上为减函数只需解得交集得综上所述,若函数具有性质,实数的取值范围是或或14分解法二:依题意,(1)由得,,解得或同时需要考虑以下三种情况:(2)由解得(3)由解得不等式组无解(4)由解得解得综上所述,若函数具有性质,实数的取值范围是或或14分考点:1.零点存在定理;2.分类讨论的思想19、(1)(2)当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】(1)根据题意可得,且,3是方程的两个实数根,利用韦达定理得到方程组,求出,,进一步可得不等式等价于,即,最后求解不等式即可;(2)当时,时,不等式等价于,从而分类讨论,,三种情况即可求出不等式所对应的解集【小问1详解】解:的不等式的解集为,,且,3是方程的两个实数根,,,解得,,不等式等价于,即,故,解得或,所以该不等式的解集为;【小问2详解】解:当时,不等式等价于,即,又,所以不等式等价于,当,即时,不等式为,解得;当,即时,解不等式得或;当,即时,解不等式得或,综上,当时,不等式的解集为,当时,不等式的解集为,当时,不等式的解集为20、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)21、(1)A=2,8,(2)∁(3)2,+∞【解析】(1)根据函数y=log8x和函数y=(2)先求出集合A与集合B的交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 修补街道施工方案(3篇)
- 打卡活动折纸方案策划(3篇)
- 公司糕点活动策划方案(3篇)
- 体操特色活动方案策划(3篇)
- 凉亭庭院施工方案(3篇)
- 2025年金融服务产品销售与服务规范
- 中学学生社团活动经费保障制度
- 2025年中职应急管理(应急处置基础)试题及答案
- 2025年大学心理学(咨询心理学)试题及答案
- 2025年大学大四(物流工程与管理)物流园区规划设计综合试题及答案
- 长途代驾安全培训内容课件
- 社工专业知识培训活动课件
- 四川省成都市树德实验中学2026届数学八上期末联考试题含解析
- 收购发票培训课件
- 鞋厂与总代商的合作方案
- 2025年贸易经济专业题库- 贸易教育的现状和发展趋势
- DB46-T 481-2019 海南省公共机构能耗定额标准
- 劳动合同【2026版-新规】
- 电子元器件入厂质量检验规范标准
- 中药炮制的目的及对药物的影响
- 688高考高频词拓展+默写检测- 高三英语
评论
0/150
提交评论