湖北省宜昌一中2026届高二上数学期末复习检测模拟试题含解析_第1页
湖北省宜昌一中2026届高二上数学期末复习检测模拟试题含解析_第2页
湖北省宜昌一中2026届高二上数学期末复习检测模拟试题含解析_第3页
湖北省宜昌一中2026届高二上数学期末复习检测模拟试题含解析_第4页
湖北省宜昌一中2026届高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省宜昌一中2026届高二上数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.2.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.3.记为等差数列的前n项和,有下列四个等式,甲:;乙:;丙:;丁:.如果只有一个等式不成立,则该等式为()A.甲 B.乙C.丙 D.丁4.观察数列,(),,()的特点,则括号中应填入的适当的数为()A. B.C. D.5.为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A.10种 B.12种C.16种 D.24种6.①命题设“,若,则或”;②若“”为真命题,则p,q均为真命题;③“”是函数为偶函数的必要不充分条件;④若为空间的一个基底,则构成空间的另一基底;其中正确判断的个数是()A.1 B.2C.3 D.47.直线与圆相切,则实数等于()A.或 B.或C.3或5 D.5或38.设等比数列的前项和为,若,则()A. B.C. D.9.设函数,则下列函数中为奇函数的是()A. B.C. D.10.命题“”的一个充要条件是()A. B.C. D.11.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.12.在空间直角坐标系中,已知点A(1,1,2),B(-3,1,-2),则线段AB的中点坐标是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)二、填空题:本题共4小题,每小题5分,共20分。13.若直线过圆的圆心,则实数a的值为_________.14.已知曲线的焦距是10,曲线上的点到一个焦点的距离是2,则点到另一个焦点的距离为__________.15.设x,y满足约束条件则的最大值为________16.必然事件的概率是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)当a=1时,对于任意的,,都有恒成立,则m的取值范围.18.(12分)设圆的圆心为A,直线l过点且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E(1)判断与题中圆A的半径的大小关系,并写出点E的轨迹方程;(2)过点作斜率为,的两条直线,分别交点E的轨迹于M,N两点,且,证明:直线MN必过定点19.(12分)已知函数(1)填写函数的相关性质;定义域值域零点极值点单调性性质(2)通过(1)绘制出函数的图像,并讨论方程解的个数20.(12分)我们知道,装同样体积的液体容器中,如果容器的高度一样,那么侧面所需的材料就以圆柱形的容器最省.所以汽油桶等装液体的容器大都是圆柱形的,某卧式油罐如图1所示,它垂直于轴的截面如图2所示,已知截面圆的半径是1米,弧的长为米表示劣弧与弦所围成阴影部分的面积.(1)请写出函数表达式;(2)用求导的方法证明.21.(12分)已知椭圆点(1)若椭圆的左焦点为,上顶点为,求点到直线的距离;(2)若点是椭圆的弦的中点,求直线的方程22.(10分)已知函数(1)若在上单调递减,求实数a的取值范围(2)若是方程的两个不相等的实数根,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B2、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.3、D【解析】分别假设甲、乙、丙、丁不成立,验证得到答案【详解】设数列的公差为,若甲不成立,则,由①,③可得,此时与②矛盾;A错,若乙不成立,则,由①,③可得,此时;与②矛盾;B错,若丙不成立,则,由①,③可得,此时;与②矛盾;C错,若丁不成立,则,由①,③可得,此时;,D对,故选:D.4、D【解析】利用观察法可得,即得.【详解】由题可得数列的通项公式为,∴.故选:D5、A【解析】对中心组学习所在的阶段分两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有种方法.综合得不同的安排方案共有10种.故选:A6、B【解析】利用逆否命题、含有逻辑联结词命题的真假性、充分和必要条件、空间基底等知识对四个判断进行分析,由此确定正确答案.【详解】①,原命题的逆否命题为“,若且,则”,逆否命题是真命题,所以原命题是真命题,①正确.②,若“”为真命题,则p,q至少有一个真命题,②错误.③,函数为偶函数的充要条件是“”.所以“”是函数为偶函数的充分不必要条件,③错误.④,若为空间的一个基底,即不共面,若共面,则存在不全为零的,使得,故,因为为空间的一个基底,,故,矛盾,故不共面,所以构成空间的另一基底,④正确.所以正确的判断是个.故选:B7、C【解析】先求出圆的圆心和半径,再利用圆心到直线的距离等于半径列方程可求得结果【详解】由,得,则圆心为,半径为2,因为直线与圆相切,所以,得,解得或,故选:C8、C【解析】利用等比数列前项和的性质,,,,成等比数列求解.【详解】解:因为数列为等比数列,则,,成等比数列,设,则,则,故,所以,得到,所以.故选:C.9、A【解析】求出函数图象的对称中心,结合函数图象平移变换可得结果.【详解】因为,所以,,所以,函数图象的对称中心为,将函数的图象向右平移个单位,再将所得图象向下平移个单位长度,可得到奇函数的图象,即函数为奇函数.故选:A10、D【解析】结合不等式的基本性质,利用充分条件和必要条件的定义判断.【详解】A.当时,满足,推不出,故不充分;B.当时,满足,推不出,故不充分;C.当时,推不出,故不必要;D.因为,故充要,故选:D11、A【解析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.12、B【解析】利用中点坐标公式直接求解【详解】在空间直角坐标系中,点,1,,,1,,则线段的中点坐标是,,,1,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆的求得圆心坐标,将圆心坐标代入直线方程,即可求解.【详解】由题意,圆,可得圆心为,因为圆心为在直线上,可得,解得.故答案:.14、或10.【解析】对参数a进行讨论,考虑曲线是椭圆和双曲线的情况,进而结合椭圆与双曲线的定义和性质求得答案.【详解】由题意,曲线的半焦距为5,若曲线是焦点在x轴上的椭圆,则a>16,所以,而椭圆上的点到一个焦点距离是2,则点到另一个焦点的距离为;若曲线是焦点在y轴上的椭圆,则0<a<16,所以,舍去;若曲线是双曲线,则a<0,容易判断双曲线的焦点在y轴,所以,不妨设点P在双曲线的上半支,上下焦点分别为,因为实半轴长为4,容易判断点P到下焦点的距离的最小值为4+5=9>2,不合题意,所以点P到上焦点的距离为2,则它到下焦点的距离.故答案为:或10.15、1【解析】先作出可行域,由,得,作出直线,向下平移过点时,取得最大值,求出点坐标代入目标函数中可得答案【详解】作出可行域如图(图中阴影部分),由,得,作出直线,向下平移过点时,取得最大值,由,得,即,所以的最大值为,故答案为:116、1【解析】直接由必然事件的定义求解【详解】因为必然事件是一定要发生的,所以必然事件的概率是1,故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】(1)由题可得,利用导数与单调性关系分类讨论即得;(2)由题可得,利用函数的单调性及极值求函数最值即得.【小问1详解】由题可得的定义域为,若,恒有,当时,,当时,,∴在上单调递增,在上单调递减,若,令,得,若,恒有在上单调递增,若,当时,;当时,,故在和上单调递增,在上单调递减,若,当时,;当时,,故在和上单调递增,在上单调递减;综上所述,当,在上单调递增,在上单调递减,当,在和上单调递增,在上单调递减,当,在上单调递增,当,在和上单调递增,在上单调递减;【小问2详解】由(1)知,时,在和上单调递增,在上单调递减;当a=1时,,,,∴.又,,∴.由题意得,,∴.18、(1)与半径相等,(2)证明见解析【解析】(1)依据椭圆定义去求点E的轨迹方程事半功倍;(2)直线MN要分为斜率存在的和不存在的两种情况进行讨论,由设而不求法把条件转化为直线MN过定点的条件即可解决.【小问1详解】圆即为,可得圆心,半径,由,可得,由,可得,即为,即有,则,所以其与半径相等.因为,故E的轨迹为以A,B为焦点的椭圆(不包括左右顶点),且有,,即,,,则点E的轨迹方程为;【小问2详解】当直线MN斜率不存在时,设直线方程为,则,,,,则,∴,此时直线MN的方程为当直线MN斜率存在时,设直线方程为:,与椭圆方程联立:,得,设,,有则将*式代入化简可得:,即,∴,此时直线MN:,恒过定点又直线MN斜率不存在时,直线MN:也过,故直线MN过定点.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。19、(1)详见解析(2)详见解析【解析】(1)利用导数判断函数的性质;(2)由函数性质绘制函数的图象,并将方程转化为,即转化为与的交点个数.【小问1详解】函数的定义域是,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,同时也是函数的最大值,,当时,,当时,,函数的值域是,,得,所以函数的零点是,定义域值域零点极值点单调性性质单调递增区间,单调递减区间【小问2详解】函数的图象如图,,即,方程解的个数,即与的交点个数,当时,无交点,即方程无实数根;当或时,有一个交点,即方程有一个实数根;当时,有两个交点,即方程有两个实数根.20、(1),(2)证明见解析【解析】(1)由弧长公式得,根据即可求解;(2)利用导数判断出在上单调递增,即可证明.【小问1详解】由弧长公式得,于是,【小问2详解】cos,显然在上单调递增,于是.21、(1)(2)【解析】(1)根据椭圆基本关系求得,,再利用截距式求得方程,进而求得点到直线的距离.(2)设,利用点差法求解即可.【详解】(1)椭圆的左焦点是,上顶点,方程为,即,点到直线的距离;(2)设,,,,又,,两式相减得:,,即直线的斜率为,直线的方程为:,即【点睛】本题主要考查了椭圆中的基本量运算以及点差法的运用,属于基础题.22、(1);(2)详见解析【解析】(1)首先求函数的导数,结合函数的导数与函数单调性的关系,参变分离后,转化为求函数的最值,即可求得实数的取值范围;(2)将方程的实数根代入方程,再变形得到,利用分析法,转化为证明,通过换元,构造函数,转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论